ABSTRACT: This paper presents the drive bearing evaluation system to quantitatively describe and evaluate driving peculiarities and styles regarding dump truck drivers in a haulage work. The drive bearing represents appearance and motion in driving. It would provide site-manager and resident engineers with quantitatively suitable indices to guide or instruct drivers under their control with the objective of increasing haulage efficiency and achieving the ECO first haulage work. Firstly, this paper presents existing problems latent in a fleet management for a haulage work and the purpose of this study. Secondly, the ECO first haulage work is explained. Thirdly, described is the configuration of the drive bearing evaluation system that has a site process database in which actual driving data are preserved, and that automatically edits the data to produce daily and monthly reports and to issue driving evaluation cards for each driver. Fourthly, reported is the application of this system to haulage work of no-slump concrete for multilayer sediment control dam by unmanned construction in the Unzen restoration project. Finally, remarks are presented.

Keywords: Driving Bearing, Eco First Haulage Work, Drive Bearing Evaluation Cards

1. PROBLEMS AND PURPOSE
Although we often face capacity- and time-dependent heuristic indices or qualitatively instructions coupled to construction efficiency and energy-saving in a haul work, we have heard few the quantitative indices and the concrete instructions about it.

This paper presents the drive bearing evaluation system to quantitatively describe and evaluate driving peculiarities and styles regarding dump truck drivers in a haulage work. The drive bearing represents appearance and motion in driving \(^1\). It would provide site-manager and resident engineers with quantitatively suitable indices to guide or instruct drivers under their control with the objective of increasing haulage efficiency and achieving ECO first haulage work.

2. ECO FIRST HAULAGE WORK
Having said that, the drive bearing represents appearance and motion in drivings, which might impact construction efficiency and energy-saving regarding a haulage work.

The good drive bearing in the ECO first haulage work is supposed to have the following characteristics:
- Standard deviation of velocity might be small,
- Maximal numeric value of acceleration might be small,
- Absolute value of minimal deceleration might be small,
- Standard deviation of acceleration and deceleration might be small,
- Acceleration and jerk might have a bell shaped distribution with more or less the same sized tails on each side, respectively,
- Number of changes in acceleration and deceleration might be less, and
- Average of the squared jerks along the travel from a loading spot to the destination might be small.

The characteristics above are explained and found by explanatory variables, which include departure and arrival times, time elapsed for work performed at each work cell, distance travelled, number of round trips, average payload of a dump truck, velocity (travel speed), accelerations, number of changes in acceleration, that is to say, mean
crossing rate, jerks, trip time (loaded, empty), round trip time, cycle time per day or hour, and driving footprint.

The number of changes in acceleration shows the number that acceleration values stride across the average value as shown in figure 1.

\[mcr = \frac{1}{n} \sum_{i=1}^{n} |\text{sgn}(x_i - \bar{x}) - \text{sgn}(x_{i-1} - \bar{x})|, \] \hspace{1cm} (1)

where “mcr” is mean crossing rate, “\(x_i\)” is the ith acceleration or deceleration for \(i = 1...n\), “n” is number of samples, “\(\bar{x}\)” is the average value, and “\(\text{sgn}\)” is signum function.

The small value of the mean crossing rate represents few changes in the acceleration, that is to say, driving at the uniform speed. Conversely, the large one represents stepping on the accelerator and putting on the brake many times, alternately.

Consider the distribution of acceleration in figure 2.

The skewness is a measure of the lack of symmetry as to the distribution shape.

The skewness value is obtained by:

\[\text{Skewness} = \frac{1}{n} \sum_{i=1}^{n} \left(x_i - \bar{x} \right)^3 / \hat{\sigma}^3, \] \hspace{1cm} (2)

where “\(x_i\)” means ith observation for \(i = 1...n\), “n” is number of samples, “\(\bar{x}\)” is the average value, “\(\hat{\sigma}\)” is standard deviation.

The skewness gives a visual method for appearance and motion in operations of accelerator and brake as follows:
- If the skewness value of acceleration should be negative, it can be conjectured that the driver is prone to put on the break strongly at times, and conversely, tends to step on the accelerator short, repeatedly;
- If the skewness value of acceleration should be in the neighborhood of zero, the driver might stably steer her/his dump truck under the better driving conditions; and
- If the skewness value of acceleration should be positive, the driver tends to put on the brake bit by bit, and conversely, is prone to rush into acceleration at times.

The average of the squared jerks is obtained by

\[ASJ = \frac{1}{n} \sum_{i=1}^{n} J_i^2, \] \hspace{1cm} (3)

where “ASJ” is average of the squared jerks, “Ji” is the ith jerk for \(i = 1...n\), and “n” is number of samples.

The small average of the squared jerks shows the high efficiency of the energy, conversely, the large one the low efficiency.

3. CONFIGURATION

The drive bearing evaluation system is a cloud software system, and can be rapidly provisioned and released with
minimal management effort, which is built in the collaboration, communication, construction and intelligent management (C3IM). The C3IM is a comprehensive, web-enabled system to enhance collaborative works and interactive communication, and to grasp significant information in order to support the unmanned construction, which aims to manage a fleet to ensure reliable construction operations at points on construction in such a hazardous environment [2].

The drive bearing evaluation system that has a site process database in which actual driving data are preserved, and that automatically edits the driving data to produce daily and monthly reports and to issue driving evaluation cards for each driver.

Staple functions of the drive bearing evaluation system are described below. Information flow when using the drive bearing evaluation system is shown in figure 3.

As the preliminary preparations, first of all, managed objects, such as drivers, dump truck, GPS receivers, users, types of materials, are registered in the drive bearing evaluation system. Subsequently, the haulage route from the borrow pit or the batching plant to the destination is divided into several distinct segments, considering the road conditions such as width, curvatures, grades, densely close proximity to residential area, etc. Figure 4 shows an example of a haulage route being zoned. Here, regarding the distinct segments, the names, the coordinates such as longitude and latitude of the four corners, and the speed limits of driving are given. Users are able to confirm the coordinates displayed on the PC screen by putting the cursor on the point of the four corners.

The each driver carries GPS receiver with her/his dump truck. After finishing her/his daily work, she/he hands personnel at the site office the GPS receiver. The personnel sends the GPS data to the drive bearing evaluation system built in the C3IM. Subsequently, the GPS data automatically are edited into numeric values of the explanatory variables regarding the drive bearing. Those numeric values are calculated and summed up regarding the each distinct segment, and would produce information relevant to haul management. Examples of relevant information produced by the drive bearing evaluation system are shown below.

Figure 5 shows an example of the look-up table of the haulage operation one day.
4. APPLICATION

Figure 8 gives an overview of the no-slump concrete haulage and placement in the Unzen restoration project[2]. The drive bearing evaluation system has been applied to no-slump concrete haulage by 10 tones dump trucks from the ready-mixed concrete batching plant to the spot where it is transferred to off-highway dump trucks as shown in picture 1. Subsequently, the off-highway dump trucks haul the no-slump concrete to the designated dumping spot.

The driver put her/his GPS receiver included in a vinyl case is put on the dashboard of her/his dump truck as shown in picture 2.

According to the comprehensive evaluation of the drive bearing based on the above analysis results, the driving bearing evaluation cards would automatically be issued.

Looking at the information as mentioned above, it could make it possible to make suitable decisions on a timely basis and to promptly provide haul truck drivers with relevant instructions.
control can be confirmed by a cellular phone. The each driver could self-examine the appearance and motion in her/his driving and reflect on her/his own tendency to drive.

Figure 11 gives an example of the histograms regarding velocity, acceleration, jerk, etc. displayed on a cellular phone.

Figure 12 shows an example of the graphic views of the transitions of the velocity, acceleration, etc. one week being displayed on a cellular phone.

Figure 13 shows an example of a driving bearing evaluation card as a comprehensive evaluation as to a driver is displayed on a cellular phone as shown in figure 13.
5. REMARKS

On daily duty-cycle, the drive bearing evaluation system could provide site-manager and resident engineers at the Unzen restoration project with quantitatively suitable indices to guide or instruct drivers under their control with the objective of increasing haulage efficiency and achieving ECO first construction. In addition, the each driver could have opportunity to reflect on her/his drive bearing.

ACKNOWLEDGEMENT

To apply the drive bearing evaluation system to the Unzen restoration project, we have received the support and encouragement from, and would like to thank resident engineers at the Akamatsu 6 and the Oshiga-tani site offices, Kumagaigumi, Co., Ltd.

REFERENCES

