Simulating the Knowledge Environment for
Autonomous Construction Robot Agents

Boyd Paulson, Thomas Froese and Lai-Heng Chua
Department of Civil Engineering
Stanford University
Stanford, CA 94305-4020

ABSTRACT

Future intelligent construction machines must harness considerable
knowledge to plan and control autonomous tasks in spite of the fact that they
will be limited in their own pre-defined knowledge. This paper first describes
the need to discover and formulate a general core of theory and software for
such machines so that they can access and communicate with knowledge
sources in their environment. It next describes current research to simulate
characteristics of the knowledge environment for robot agents. An example will
illustrate an early implementation effort that uses object-oriented programming
for such a simulation. This research will provide a theoretical base for the
knowledge environment to sustain automation research for autonomous robots
working in real and very challenging field conditions.

INTRODUCTION AND BACKGROUND

In future construction field environments, intelligent machines, like their human
counterparts, will need to harness considerable knowledge to plan and control autonomous
tasks in spite of the fact that they will be limited in their own knowledge and abilities.
However, no unifying theory and few guidelines exist for defining and communicating
knowledge about designs and field operations in a way that can effectively be utilized by
such machines. At Stanford and elsewhere, researchers are working toward such a theory
in order to support the work of others on practical applications of robots in field conditions
[Paulson 85, Paulson et al 89]. Some of the research focuses on cognitive aspects of
future machines to endow them with common modes of “thinking”” and communicating—in
effect a common culture—so that they can work together and with humans in groups.

The scope of research needed to build theories and software to support construction
robotics is vast. In general, researchers need to develop machine agents having enhanced
abilities to work well in relatively unstructured and fast-changing environments. Each step
in this research should lead toward a general architecture handling the knowledge an agent
needs to function productively in a knowledge environment. The resulting software could
then be extended by developers of applications-oriented robots to handle particular areas of
expertise, whether in managing other machines or in doing specific physical tasks. This
basic research would provide a platform for more rapid integration of robotic systems.

Figure 1 shows a broad conceptual view of the construction knowledge environment.
It illustrates the organizational context in which the robots might be working, the interfaces
to computer-aided design (CAD) databases and reasoning, interactions with other field
agents—both human and machine—and interfaces to knowledge sources in the world
beyond the field. To establish such an environment with robotic hardware is not feasible
now. Even if one could afford them, robots with sufficient flexibility and computing
power for diverse operations do not yet exist.

475

(Organization Asclilectane, : o e

H Design =
Du et , ’ i e

b

. ° > 2N
Inslalhng ite-Monitoring Field é?;‘
and Testing Maintenance © BEBa ". =
Electronig U".%ﬁﬁ
e, Support

o, G676 e
° H ﬁl / (:!:,.} Networks
= Jamd
62‘1.\\ /
A=l 0
Material Conveyor

-
A
II . ;
tation

\All Terrain Multi-purpose Robot

Figure 1-—Conceptualization of the Knowledge Environment for Construction Automation

Stanford's research in this area consists of several active and planned projects to
simulate characteristics of robot agents themselves and build a knowledge environment
simulator in which to test them. The Robot Agent Simulator will model knowledge objects
and provide means to give agents access to the knowledge environment. This paper will
focus on the Knowledge Environment Simulator, where we are exploring and testing
methods to formalize parts of the knowledge environment in machine-usable forms. The
simulator will provide a test bed for concepts, theories and methods for researchers
working toward distributed automation. It will further provide computer-based concepts to
help integrate construction field processes into the other phases of the project life-cycle,
such as planning, design and operations. The ultimate objective is to design and develop
the general theory and software core for machine agents — the rudimentary "brains" of the
beasts — which can then be embedded in agents specialized for particular tasks.

To create simulators as prototype test beds, some of this work focuses on
representing the physical environment and providing inter-agent communication facilities
for multiple agents working in the environment. Early stages of the research also seek to
model three-dimensional construction space in a way that is compatible with the three-
dimensional CAD systems now becoming the basis for design communications.
Simulators can also implement basic physical mechanics to monitor agent motion and
location, provide minimal representations to convert design specifications into incremental
task objectives for robots, and implement a type of organizational hierarchy (e.g., a central
supervisor agent to which task agents can turn for help).

Future avenues of research should address problems of modelling within robot agent
simulators some “understanding” of the knowledge environment, such as key
characteristics of objects and other agents, in ways useful for reasoning. Among other
things, researchers should seek to reduce the knowledge that needs to be encoded in
machine systems a priori by enabling them to tap the vast knowledge sources in their
environment when needed. Automatons should be able to assemble knowledge and enlist
other agents needed to perform a task and respond dynamically to change. For example,
robot reasoning and control software should deal with unexpected obstacles, road
conditions, failure of a machine positioning system, damaged material, improper tools, or
imprecise instructions.

476

|
|
|
|
§

RELATED AND SUPPORTING RESEARCH

Related research occurs in several main categories: (1) general theories for simulating
the knowledge environment and knowledge agents; (2) implementation methodologies; (3)
distributed processing systems and concurrent programming; and (4) artificial robot
languages. This section will concentrate on numbers 1, 2 and 3, but only selected topics
can be highlighted in the space available here.

Key artificial intelligence areas include blackboards [Hayes-Roth 85] and general
problem solving architecture [Laird et al 87]. The blackboard model started as a model of
knowledge encoding for opportunistic problem solving [Erman et al 81]. [Kellogg 83,
Kogan 84 and Koo 87] proposed construction of intelligent assistants for information
management. [Euzenat et al 85] looked at intelligent database access—that is, providing an
intelligent interface for databases rather than just a natural language one. In line with this
has been work on deductive databases [Gallaire et al 85]. [Ingwersen 86, Lebowitz 86,
and Shaw and Gaines 86] took it further towards an intelligent information system.

To support object-oriented implementations of such research, Smalltalk-80 [Goldberg
and Robson 83] has been the main programming language. Since inception it has been
used for a wide range of applications from Al type systems to ordinary algorithmic
programming. Other important languages in this area include C++ [Stroustrup 86] and
Objective C (The Stepstone Corporation). ThingLab [Borning 81; Farrah and Borning 86],
a constraint-based language developed at the Xerox Palo Alto Research Center, can be used
to build simulations of real-world systems. Alternate Reality Kit [Smith 86] is a simulation
kit for interactive physics. Another simulator written in Smalltalk is called INSIST
[Meulen 87]. ACTRA [Lalonde et al 87] is a distributed object-oriented computer system
based on Smalltalk and targeted for industrial applications such as flexible manufacturing,
simulation, control, CAD/CAM and project management. MACE [Gasser et al 87], an
acronym for Multi-Agent Computing Environment, is a simulation environment designed to
serve as an instrumented test bed for building experimental distributed artificial intelligence
systems even at different levels of granularity. It has powerful constructs for describing
agents, their organizational structure and interaction, and could provide a useful test bed for
construction robotics research. The research most closely related to that described in this
paper is that by [Keirouz et al 88] at Carnegie-Mellon University. It is using Smalltalk-
based object-oriented modeling of the temporal, geometric and functional evolution of
constructed facilities.

Distributed systems models such as ACTORS [Agha 86, Hewitt et al 75] and
distributed databases [Howard and Rehak 87] relate to this research. There has been
significant work concerned with distributed problem solving [Durfee and Lesser 87,
Georgeff 82, Konolige and Nilsson 80]. [Davis and Smith 83, and Koo 87] studied
cooperative planning and distributed problem solving. [Corkill and Lesser 83] used the
monitoring of distributed vehicles as a test bed for studying distributed problem solving.
These researchers are more concerned about global properties or behavior of the system
design while robot agents mainly need the knowledge to do their work and get around in
their existing knowledge environment.

ENVIRONMENT SIMULATOR EXAMPLE

This section briefly introduces a prototype environment simulator being developed as
a test bed for future robot agent software. The simulator replicates the process of an agent
attempting to obtain information from its environment through its sensors and
communication channels, and also the process of the agent performing actions which
change the state of the environment. Both functions are accomplished by allowing the
agent to pass messages to the environment simulator and receive response messages back.

477

In the current implementation, a user serves as the agent since our agent simulators
have not yet been developed. The simulator acts not only as the agent's environment, but
also provides some of the agent's low-level functions. For example, if a "sighted" robot
wishes to find out the shape of an object, it can ask that object what it's shape is and the
object will respond with a message describing its shape. An actual robot in a real
environment would need to instruct its vision sensors where to point and would have to
analyze the resulting signals in order to derive the object's shape. We bypass these steps in
the simulator, however, since our interests lie in the robot's higher-level reasoning.

Implementation Approach. Our environment simulator is implemented in
Smalltalk-80. The basic representation approach is an object-oriented frame scheme. Each
object from the agent's environment which is to be represented within the simulator is
declaratively and procedurally described by a frame. Frames contain slots which can hold
either attributes of the object, relationships to other objects, or procedures related to that
object. Slot values can be inherited along abstraction hierarchy relationships.

Messages are sent by the agent to a frame representing the environment itself, this
frame subsequently passes the message on to the appropriate frame within the environment.
The onus of sending appropriate messages rests mainly on the agent. For example, if a
robot wishes to query a project database, it must address its message specifically to that
database and must pose it's query in a form which is understandable to the database. When
such a message is received by the environment, it simply determines where the message is
to be directed and it passes the message on to the corresponding frame. At times, however,
the interpretation of the message depends upon the context within the environment. For
example, a sighted robot may attempt to discern the shape of whatever object is positioned
directly in front of it without knowing what that object is. In such a case, the robot would
send a message such as "what is the shape of the object directly in front of me?" to the
environment. The environment frame would resolve what the object directly in front of the
agent was (based on the known position of the robot, which is itself an object in the
environment, and on the positions of other nearby objects). It would then pass the
message on to that object's frame.

Example Scenario. This example involves earth moving. Specifically, suppose
that the simulator is modelling the environment of an agent which controls the loading of a
scraper under its own power (i.e., no pusher). The agent has access to several sensors and
actuators on the scraper and can communicate with an equipment database and with the
scraper's operator. The agent's task is to operate the scraper's throttle, transmission and
bowl controls during in order to achieve optimal loading rates and durations. Figure 2
shows the primary objects represented within the simulator for this environment.

The Simulator's Performance. A sample simulator session for this scenario is
summarized in Table 1, which shows the messages sent to the environment simulator by
the agent (i.e., the user at present) as well as the simulator's responses. The reasoning
being performed within the simulator during the course of this session includes some initial
responses from other agents within the environment (the operator and the equipment
database). These responses correspond to simple facts known by these other agents. The
remainder of the session centers around the performance of the scraper during a loading
operation. This performance is governed by simulation procedures which depend upon the
values of the scraper's attributes. For example, determining the scraper's load size depends
upon the scraper's speed, the cutting depth, the cutting width, the soil characteristics, and
the duration of the loading; the scraper's speed is a function of it's rimpull force and the
rolling, grade, cutting and loading resistances; and so on.

Some of these attribute values are set by the agent (the throttle and cutting blade
positioning, for example). Others are accessible to the agent through its sensors connected
to the scraper (such as the scraper speed). Still other attributes are internal and cannot be
determined by the agent (the loading rate of the scraper, for example). Many procedures

478

Environment Agent

objects

Equipment
Database

Equipment
Mechanics

Scrapers

@ Mechanics
governed by
Cat Locations Soil Types
- 621EScrapers I Operator

|
Gs-an-instance-of) operated-by) (is-an-instance-of) (is-an-instance-of)
|

I Scraper4?2 I (‘odaﬁon_o,_se")_‘ Location1 Loose Earth

Figure 2 — Scraper Loading Example

governing the scraper's performance are associated with the equipment mechanics frame.
When queries are sent to the scraper42 frame (i.e., for the specific machine), a procedure is
inherited from the scrapers frame (for the general class of these machines) which uses a
"mechanics-governed-by" relationship to direct them to the equipment mechanics frame.
Other relationship links allow attribute values to be determined. For example, a procedure
which requires the characteristics of the soil being loaded could query the scraper42 frame,
which would use a "location-of-self" relation to pass the message on to the scraper's
location frame (locationl), which has soil type stored as an attribute. Note that we
currently deal with time in the simulator by simply instructing the environment when to
perform a clock tick.

The Agent's Performance. In the sample session illustrated in Table 1, the task
of the agent is to control and optimize loading. This task involves gathering information
from other agents (for example, determining the maximum cutting depth from the
equipment database as shown in line 5), standard operating practices (such as accelerating
the scraper smoothly as illustrated in lines 6 and 9), reasoning based on monitoring sensor
values (such as raising the cutting blade when the engine starts to lug as shown in line 15),
and reasoning about the consequences of it's actions (such as stop loading at a certain point
based on optimization of the overall duration of the load, haul, dump, return cycle)

The scenario illustrated here is not complex, but it illustrates several goals of our
endeavors. With this simulator we are beginning to determine what knowledge is required
to represent and to model a construction environment. We are also learning how to
appropriately organize environment knowledge and how to achieve interaction between
bodies of knowledge. This information is important not only to the environment simulator
project, but also to the robot agent project since the robot will need to store some model of
its environment within its own state.

479

Agent's Message: Response:
1. Operator, what is the identification number of this scraper 42
2. Operator, what type of soil is at this location loose earth
3. Operator, how much time does the rest of the haul

haul and dump cycle take 2.5 min.
4. Equipment database, what type of scraper is scraper42 Cat 621E
5. Equipment database, what is the maximum cutting depth
for a Cat 621E scraper 13 inches

6. Scraper 42, open your throttle to 40% ok
7. Environment, clock tick ok
8. Scraper 42, set your cutting depth to 13 inches _ ok
9. Scraper 42, open your throttle to 80% ok
10. Environment, clock tick ok
11. Scraper 42, what is the engine RPM 1,800
12. Scraper 42, how large is your bowl load 15,000 1bs
13. Environment, clock tick ok
14. Scraper 42, what is the engine RPM 1,300
15. Scraper 42, set your cutting depth to 8 inches ok
16. Scraper 42, how large is your bowl load 28,500 1bs
17. Environment, clock tick ok
18. Scraper 42, what is the engine RPM 1,700
19. Scraper 42, how large is your bowl load 42,000 lbs
20. Scraper, set your cutting depth to 0 ok
21. Operator, the scraper is loaded thanks

Table 1 — Record of Example Scraper Scenario

In terms of providing a test bed for future robot simulators, we are presenting many
challenges to such agents even with simple scenarios such as this. In order to successfully
navigate this simulation, the agent must interact with other agents in the environment, must
develop a plan of action based on information from its surroundings, must monitor the

results of it's actions and modify its plans accordingly, and must perform complex -

reasoning about the results of its actions.

CONCLUSION

This has been a brief overview of a complex fabric of interwoven research needs.
Machine agents in complex field environments will have to deal with many difficulties.
The only tractable approach in the short term is to limit the use of machines to environments
that are—or can be—carefully structured, or to leave most of the control and sensing with
human agents. Researchers must look further to develop the underpinnings for more
capable machines. We must discover and formulate the general computer-based reasoning
and communications core for machines that would provide them with the ability to deal
with unexpected events to a greater extent and exploit the opportunities provided by the

480

-

knowledge environment. In particular, the kind of machines envisaged will be able to deal
with uncertainty, adapt to a dynamically changing environment, be able to seck knowledge
beyond their spheres, and work in teams to perform complex tasks. Future research
should provide a more robust basis for integration of machines with human organizations,
with other machines and with a multitude of tools of production.

ACKNOWLEDGEMENT

For this research we are fortunate to be part of the Center for Integrated Facility
Engineering (CIFE) at Stanford, which is operated jointly by the Departments of Civil
Engineering and Computer Science and has corporate members from the design,
construction and computer industries and representatives from owners and government
agencies. We are also indebted to The National Science Foundation, which, through a
series of grants (including MSM 83-12350, MSM 84-06852 and MSM 86-14238) has
provided the intellectual freedom to explore the basic research that led to the formulation of
the research agenda described herein. ’

REFERENCES

Agha, G. A., 1986. Actors, MIT Press, Cambridge, Massachusetts.

Borning, A., 1981. “The Programming Language Aspects of ThingLab, A Constraint-
Oriented Simulation Laboratory,” ACM Transactions on Programming Languages and
Systems, Oct.

Corkill, D. D., and Lesser, V. R., 1983. “The Use of Meta-level Control for Coordination
in a Distributed Problem Solving Network,” Proc. 8th International Joint Conference
on Artificial Intelligence, Vol. 2, pp. 748-756.

Davis, R., and Smith, R. G., 1983. “Negotiation as a Metaphor for Distributed Problem
Solving,” Artificial Intelligence Journal, Vol. 20, pp. 63-109.

Durfee, E. H. and Lesser, V. R., 1987. “Using Partial Global Plans to Coordinate
Distributed Problem Solvers,” Proc. 10th International Joint Conference on Artificial
Intelligence, Vol. 2, pp. 875-883.

Erman, L. D., London, P. E., and Fickas, S. F., 1981. “The Design and an Example Use
of HEARSAY,” Proceedings of the 7th International Joint Conference on Artificial
Intelligence, Los Altos, CA, pp. 409-415.

Euzenat, B., Normier, B., and Ogonowski, A., 1985. “SAPHIR+RESEDA, A New
Approach to Intelligent Data Base Access,” Proc. 9th International Joint Conference on
Artificial Intelligence, Vol. 2, pp. 855-857.

Farrah, T., and Borning, A., 1986. A User Interface for ThingLab Based on Direct
Manipulation of Physical Objects, Technical Report 86-09-02, Department of Computer
Science, University of Washington, Sep.

Gallaire, H., Minker, J., and Nicolas, J. M., 1985. “Logic and Databases: A Deductive
Approach,” ACM Computing Surveys, Vol. 16, No. 2, (Jun.), pp. 153-185.

Gasser, L., Braganza, C. and Herman, N., 1987. “MACE: A Flexible Test bed for
Distributed AI Research,”

Georgeff, M., 1982. “A Theory of Action for MultiAgent Planning,” Proc. 2nd National
Conference on Artificial Intelligence, AAAI-82, pp. 121-125.

Goldberg, A., and Robson, D., 1983. Smalitalk-80: The Language and its Implementation,
Addison-Wesley Publishing Company, Menlo Park.

Hayes-Roth, B. et al. 1985. “Blackboard Architecture for Control,” Journal of Artificial
Intelligence, Vol. 26, pp. 251-321.

481

Hewitt, C., Bishop, P., and Steiger, R., 1975. “A Universal Modular ACTOR-Formalism
for Artificial Intelligence,” Proc. 3rd International Joint Conference on Artificial
Intelligence, Vol. 1, pp. 235-245.

Howard, H. C., and Rehak, D. R., 1987. “KADBASE — A Prototype Expert System-
Database Interface for Integrated CAE Environments,” Proceedings, AAAI-87, Sixth
National Conference on Artificial Intelligence, Seattle, Washington, (July).

Ingwersen, P., 1986. “Cognitive Analysis and the Role of the Intermediary in Information
Retrieval,” Intelligent Information Systems, progress and prospects, Roy Davis, Ed.,
Ellis Horwood Limited, pp. 206-237.

Keirouz, W., Rehak, D., and Oppenheim, 1., 1988. “Issues in Domain Modelling of
Constructed Facilities,” Fifth International Symposium on Robotics in Construction,
Tokyo, Japan, (June 6-8), pp. 341-350.

Kellogg, C. H., 1983. “Intelligent Assistants for Knowledge and Information Resources
Management,” Proc. 8th International Joint Conference on Artificial Intelligence, Vol.
1, pp. 170-172.

Kogan, D., 1984. “The Manager’s Assistant — An Application of Knowledge
Management,” Proceedings of the International Conference on Data Engineering,
Institute of Electrical and Electronics Engineering, IEEE Computer Society, Los
Angeles, CA, (Apr.), pp. 592-595.

Konolige, K. and Nilsson, N. J., 1980. “Multiple-Agent Planning Systems,” Proc. Ist
National Conference on Artificial Intelligence, AAAI-80, pp. 138-141.

Koo, Charles C., 1987. Synchronizing Plans among Intelligent Agents via
Communication, thesis submitted to Stanford University in partial fulfillment of the
requirements for the degree of Ph.D., August.

Laird, J. E., Newell, A., and Rosenbloom, P. S., 1987. “SOAR: An Architecture for
General Intelligence,” Artificial Intelligence Journal.

Lalonde, W. R., Thomas, D. A. and Johnson, K. 1987, “Smalltalk as a Programming
Language for Robotics?”” IEEE International Conference on Robotics and Automation,
Raleigh, North Carolina, Mar.

Lebowitz, M., 1986. “An Experiment in Intelligent Information Systems:
RESEARCHER,” Intelligent Information Systems, progress and prospects, Roy
Davis, Ed., Ellis Horwood Limited, Chichester, West Sussex, England, pp. 127-150.

Meulen, P. S. 1987, “INSIST: Interactive Simulation in Smalltalk,” Proceedings of the
1987 OOPSLA Conference, Orlando, Florida, Oct.

Paulson, Boyd C., Jr., 1985. “Automated Control and Robotics for Construction,” Journal
of Construction Engineering and Management, ASCE, Vol. 111, No. 3, (Sep.), pp.
190-207.

Paulson, Boyd C., Jr., Nadeem Babar, Lai-Heng Chua and Thomas Froese, 1989.
“Simulating Construction Robot Agents and their Knowledge Environment,” CIFE
Working Paper No. 003, Stanford University, (January).

Shaw, M. L. G., and Gaines, B. R., 1986. “A Cognitive Model for Intelligent Information
Systems,” Intelligent Information Systems, progress and prospects, Roy Davies, Ed.,
Ellis Horwood Limited, Chichester, West Sussex, England, pp. 238-258.

Smith, R. B., 1986, “The Alternate Reality Kit: An Animated Environment for Creating
Interactive Simulations,” Proceedings of 1986 IEEE Computer Society Workshop of
Visual Languages, Dallas, Texas, Jun.

Stroustrup, B., 1986. The C++ Programming Language, Addison-Wesley, Menlo Park,
CA.

482

	page 1
	page 2
	page 3
	page 4
	page 5
	page 6
	page 7
	page 8

