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Abstract 

Most of the current techniques for automating progress data collection promise to eliminate labor-
intensive tasks associated with manual data collection. A drawback is the necessity to add additional steps to 
be performed before, during, or after utilization of such technologies. Working with such featureless data 
and without having semantic information of the scene, geometric-reasoning is problematic and induces 
estimation errors. In this paper application of unordered daily progress photograph logs, available on any job 
site, as a data collection technique is explored. In our proposed approach, a sparse 3D geometric scene of a 
construction site is reconstructed and photographs are geo-registered. This allows project managers to 
remotely explore as-built scene and geo-registered site photographs at different stages of progress, minimize 
their travel time, perform remote as-built analysis and use the proposed system as a tool for contractor 
coordination purposes. Furthermore, the point cloud allows the planned model to be registered with the as-
built scene, in turn supporting development of the automatic 3D recognition technique and quantification of 
as-built progression from the geo-registered images. We present our results on two ongoing construction 
projects and further discuss technical issues on developing and implementing this technology for automation 
and visualization of as-built construction. 

Introduction 

In today’s economy, construction companies are seeking new ways to streamline their work processes to 
reduce project durations and costs. The reasons are simple: owners need to minimize time and cost for their 
services or marketing products and thus need to reduce the delivery time for facilities that provide such 
services or products. Along the same line, contractors are faced with intense competition, tight market 
constraints and slim profit margins. These situations motivate contractors to detect actual or potential delays 
and cost overruns in field activities as early as possible. Systematic and comprehensive tracking and 
monitoring of construction performance, workforce productivity, site layout and quality provides managers 
with an opportunity to detect such delays and overruns, initiate remedial actions and increase the chance of 
controlling their impacts. 

Despite the importance, current practice of data collection experiences several process inefficiencies. 
Every day, superintendents and field engineers must collect and extract extensive amount of as-built data 
(Navon and Sacks 2007) which in turn may cause human-errors and induce error in the manually collected 
data (observed by authors). The excessive load of the required work usually makes monitoring task non-
systematic and leaves it to be based largely upon judgments derived from past experiences. This may create a 
tendency to let project plan inputs  be used as performance measures which in turn affects quality of the 
results (Meredith and Mantel 2003). Some of the currently used techniques such as cost-based monitoring 
may create a time-lag between the time that actual progress is reported and the time that progress is actually 
obtained. Also site activities are more numerous than what plans usually describe. Consistent changes on the 
job site including location of construction equipment, workforce, materials and the work sequences usually 
not included in the original plans are left to be noted in text or chart forms (Shih et al. 2004). These 
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recording and reporting forms may increase the time required to describe and explain the as-built situation, 
consistently changing layouts and constructability issues in coordination meetings as well as delaying the 
decision-making process (Golparvar-Fard et al. 2006). In summary, with current data collection, analysis and 
reporting methods it may not be easy to clearly and quickly understand the progress situation. Functions that 
enable automatic digital recording, identification and reporting of the as-built construction site will be useful. 

Most of the current technologies for automating data collection (such as laser scanners, Radio Frequency 
Identification (RFID) tags, Global Positioning Systems (GPS), Wireless Fidelity (Wi-Fi) and Ultra Wide-
Bands (UWB) sensors are promising if one wishes to eliminate labor-intensive and non-value adding tasks 
associated with manual site data collection.  However, a drawback in application of these technologies is the 
necessity to add additional steps needed to be performed before, during, or after utilization of such 
technologies at a construction site (Kiziltas et al. 2008). For instance, by using laser scanners, only Cartesian 
coordinate information of the scanned scene could be retrieved. Working with such featureless data and 
without any semantic information of the scene, geometric reasoning based on this data is problematic and 
induces estimation errors. 

In this paper, application of unordered daily progress photograph logs - which is currently available on 
almost any construction site - as a data collection technique is explored. Nowadays site photographs are 
becoming valuable sources of accurate project information (Soibelman et al. 2008). It is very common 
among all parties involved in projects (from construction managers to subcontractors and clients to 
architects) to take digital photographs from construction sites to create a complete progress photo-log and 
utilize the log for coordination and communication purposes as well as collecting them as supplementary 
documents for potential claims. Cameras can cover significant areas of a construction site, especially if 
outfitted with zoom lenses. They have the capability of providing positioning information about multiple 
construction entities concurrently. All of these facts indicate that project photographs have evolved into a 
significant and irreplaceable part of project documentation and thus providing solid participations for their 
usage as visual, real-time as well as easy to obtain, low-price data capturing technology which does not need 
any expertise.  The availability of such rich imagery of large parts seen under different viewing conditions 
motivated this study to see how based on this valuable dataset, digital representation of the as-built site can 
be generated, allowing progress to be tracked and workspace logistics, constructability, quality, safety, as well 
as productivity to be analyzed.  

In our proposed approach, a sparse 3D geometric scene of the site is reconstructed and progress 
photographs are geo-registered in a virtual environment. This allows project managers to interactively and 
remotely browse and explore the as-built scene and geo-registered site construction photographs in a 3D 
environment. We show from the stand point of progress monitoring how these site photograph logs present 
an ultimate data set, giving the ability to model a significant portion of as-built geometry at high resolution 
respective to conditions where enough photographs are being taken. Within the proposed platform, 
automatic 3D recognition techniques could be developed to quantify as-built progress from the geo-
registered images. We present our results on two ongoing construction projects and further discuss technical 
issues on developing and implementing this new technology for generating and visualizing as-built scenes.  

Emerging Field Data Capture Technologies 

For more than a decade, researchers have been pointing out deficiencies in current construction site data 
collection practices (e.g., manual data collection, need for systematic collection and processing of as-built 
data to produce useful and real-time progress information (Kiziltas et al. 2008, Navon and Sacks 2007). 
According to (Navon and Sacks 2007) these research efforts have been motivated by two major drives: (a) an 
increasing need for real-time feedback and monitoring information and (b) rapid and cost effective 
technological development in automated data collection technologies for construction. The main 
technologies designed and implemented in this category are barcode and RFID tags, GPS Systems, Laser 
scanners and Time-Lapse Photography and Videotaping: 
• Barcode and RFID tags have been used to capture and transmit data from a tag embedded or attached to 
construction components (Kiziltas et al. 2008, Navon and Sacks 2007). Unlike barcodes, RFID tags do not 
require line-of-sight, close proximity, individual reading and direct contact (Kiziltas et al. 2008). RFIDs and 
barcodes potentially eliminate non-value adding tasks associated with project management processes, but 
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they require frequent installation and maintenance. Additionally they cannot be attached to many types of 
components and they do not capture progress of partially installed components. 
• Laser scanners have been used for construction quality control (Akinci et al. 2006, Jaselkis et al. 2006), 
condition assessment (Gordon et al. 2004), component tracking (Teizer et al. 2005) and progress monitoring 
(El-Omari and Moselhi 2008, Bosche and Haas 2008, Su et al. 2006). Although laser scanners are promising 
in automating data collection, there still is a set of challenges in implementing such technology on 
construction sites. These limitations include discontinuity of the spatial information, mixed pixel 
phenomenon (Kiziltas et al. 2008) as well as scanning range and sensor calibration. For example, any moving 
object in line-of-sight of the scanner would not allow the point cloud of the under-study object to be 
captured. In addition, the moving object creates additional effort of the user to manually have the point 
cloud fixed. Also as the laser scanner gets away from the objects, the level of details within the captured 
components is reduced. Besides laser scanners require regular calibrations as well as warm up time. These 
limitations are parts of the time consuming process of data collection; however since laser scanners only 
provide Cartesian coordinate information of the scanned scene, processing such data is time consuming. 
Also they do not carry any semantic information, such as which point belongs to what structural 
components. Working with this type of featureless data makes geometric reasoning based on this data 
tedious and error prone (Kiziltas et al. 2008). Also none of these techniques provide any visual, reliable 
information about work sequence, site logistics or construction crew. Recently El-Omari and Moselhi (2008) 
presented a new interesting approach for data collection by combining 3D laser scanners and 
photogrammetry. The method was shown to be less time-consuming and has higher cost savings compared 
to single application of laser scanners. Their suggested approach minimizes access limitations of scanner 
placement, but  the processing time required for each scan is still considerably high and the registration of 
images and 3D point cloud needs further adjustments. Also, laser scanners may not give the possibility of 
aligning site images taken from arbitrary view points with the 3D point cloud; yet in El-Omari and Moselhi 
(2008) the common points between laser scanner’s 3D point clouds with images have been selected 
manually. Manual selection of common points between each image and point cloud may make such systems 
difficult to manage.  
• GPS (Geographical Positioning Systems) as a location tracking tool also need line-of-sight between the 
receiver and the satellite; therefore it cannot normally operate indoors limiting the project context that could 
be monitored. Behzadan et al. (2008) suggests using WLAN technique as a tracking technique for indoor 
locations but they also report difficulties in using WLAN set ups on actual construction site and they relate 
these efficiencies to ongoing works (i.e., changes in soil, structure, plant and equipment, site layout). These 
inefficiencies necessitate WLAN system to be calibrated after regular intervals to maintain a high level of 
accuracy. Such regular calibration requirements make the system difficult to manage.  
• Time-Lapse Photography and Videotaping: Previous research efforts in using time-lapsed photographs for 
the purpose of progress tracking goes back to Oglesby et al. (1989) wherein it was reported that application 
of site photographs allows analysts to focus on the details of the work face while being away from site 
tensions and confusions and perform time-studies on time-lapsed photographs for productivity 
improvement. However, lack of advanced technologies for automation had made the process time-
consuming and unattractive to some extent. More recently, Abeid et al. (2003) presented Photo-Net II 
wherein time-lapse digital movies of construction activities were linked with critical path activities. In Photo-
Net II, time-lapse photography was used as a source of spatial as-built information.  In addition, Golparvar-
Fard et al. (2007) also recently presented an Augmented Reality (AR) system wherein 3D models are 
superimposed over time-lapsed photographs.  
• Other techniques such as wearable computers (PDAs), speech recognition and touch screens have also 
helped to collected construction site data electronically (Reinhardt et al. 2000), but current systems still need 
full time observer(s) to input and process information (Navon and Sacks 2007) and have not minimized the 
time required to process data.  
Also none of these techniques besides (El-Omari and Moselhi 2008) - in which photographs are used to 
provide more information about the context of the scene - provide visual reliable information about work 
sequence logistics, site layout or construction crews. Our approach considers all the aspects of as-built data 
collection: collection, analysis, communication and reporting. We have looked into construction site photo-logs as 
existing simple yet robust data collection and communication techniques available on all construction sites 
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managers and superintendents will spend less amount of time discussing or explaining progress. Rather, they 
can spend more time on how a control decision could be made. Furthermore, reconstructed as-built scene 
and geo-registered images allow workspace logistics, safety issues, progress and even productivity of 
workforce and machinery to be remotely analyzed. Such an as-built system could also be beneficial in weekly 
contractor coordination meetings, as the workspace could be navigated through the virtual world. (3) 
Significant cuts in travel time and cost on project executives and architects – Project Executives and architects can 
study the reconstructed scene and geo-registered images, instead of spending time and money traveling to 
the jobsite. The reconstructed scene with as-built progress images can be beneficial, especially when the 
possibility of adding new photographs quickly to the system is considered. Even if a vanishing point of an 
interest is not registered within the reconstructed scene and is not present in geo-registered image dataset, 
the user (e.g., owner, project executive) can request the scene to be photographed, since the geo-registration 
removes confusion on perspective which is inherent in dynamic scenes. Those photographs taken can also 
be quickly geo-registered which allows a significant problem of progress communication to be resolved. (4) 
D4AR System- 4 Dimensional Augmented Reality Tool - This system could also be used as a baseline for an 
Augmented Reality tool wherein as-planned model could be geo-registered within the spatial as-built 
environment allowing construction progress deviations to be measured, analyzed and communicated. To 
that extent, authors have proposed D4AR – 4 Dimensional Augmented Reality - system which superimposes 
the planned model over point cloud and utilizes a traffic light color spectrum for visualizing progress 
(Golparvar-Fard et al. 2009); (5) Automatic progress tracking- Since this model geo-registers construction site 
photographs, it could serve as a rich baseline for automating progress monitoring through consistent visual 
detection of progress deviation and comparison with as-planned information; (6) Registering New Daily Site 
Photographs- New construction progress photographs can be registered within the system instantly. First, the 
user can open a set of progress images, and drag and drop each image onto its approximate location on the 
as-planned model. After each image has been dropped, the system can estimate location, orientation, and 
focal length of the new image by running the SfM algorithm. First, SIFT keypoints are extracted and 
matched to the keypoints of the cameras closest to the initial location;  then the existing 3D points 
corresponding to the matches are identified; and finally, these matches are used to refine the pose of the new 
camera. Our preliminary results show perceived benefits and future potential enhancement of this new 
technology in construction, in all fronts of automatic data collection, processing and communication; though 
there are still many technical challenges in developing a full systematic progress monitoring system. These 
are currently being explored within the research projects highlighted in this paper. 
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