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ABSTRACT
Mobile manipulators with very large reaches and high payloads like

telescopic cranes or concrete booms are important machines for the con-

struction industry . Those systems have to be very safe . One important

item is to ensure stability under any condition.
This paper describes an approach to control the stability

considering ground conditions . The mathematical solution as well as the

sensor requirements is described.

1. INTRODUCTION

Currently most of the mobile construction machines equipped with
outriggers do not have any control to ensure their stability - the
operator has to decide by experience if the current machine condition

ensures the required stability.
An approach to overcome parts of the problem is outlined in Ill.

With such a system the computer controls if the center of gravity
remains within the outrigger feets while the manipulator is moving. If
the center of gravity moves into a dangerous area a warning is given to

the operator.
For static conditions such an approach is acceptable , however

dynamic effects (variations in the ground conditions or within the

outriggers ) are not detected as they do not create deviations of the
center of gravity. A method to overcome parts of the problems is

described.

2. DESCRIPTION OF THE METHOD

2.1 Description of the model

With our method we do first observe the center of gravity and
second use the force and torque equations for modelling the system

behaviour . To describe the physical systems we use the model as outlined

in Fig. 1.
The coordinates of the center of gravity can not be measured, but

it is possible to set up the force and torque equations by the input of
static pressure in the outrigger feets of the manipulator . We get simple

equations for the forces Fi and the pressures Pi in the outrigger feets:

Fi = ki Pi (1)
with ki factor depending on piston area.



Fig. 1 Geometric model of the manipulator

Using equation ( 1) the force and torque equation gets to
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with F = mg Force caused by weight of the manipulator.
and Tx, Ty Torques caused by the coordinates of center of gra-

vity.
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Figure 2 shows the block diagram of the stability controller.
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Fig. 2 Block diagram of stability controller

2.2 Optimum force distribution

For defining the stability a merit function has to be defined. The
aim of this step is to balance the forces in the outrigger feets. This
constraint means that the highest force we get is the minimum possible
force to solve the equation (1). To get a well balanced force vector we
need a least square solution for the force and torque equation (2^. A
simple way to get a solution is to use the pseudoinverse matrix A to
the matrix A. With a geometric model of the manipulator describing the
matrix A it is possible to compute the vector T and with matrix A+ a
least square solution for Fd can be computed.

Fd = A+ T (3)

Fd is a demand force vector to a stability controller. Therefore
the demand value generation includes the merit function for the
stability of mobile systems.

2.3 Model error

If the manipulator is set up with a well balanced force vector Fr
we have

11 Fd - Fr 11 < e 1 (4)

By moving the axes of the manipulator the vector Fd as well as the
vector Fd changes. But the unequation (4) is always satisfied. The
vector Tr can be computed by a geometric model of the manipulator using
equation (2) with the measured forces F . Td can be computed as a
function of geometric and mass data of Ehe manipulator. We get the
equations

Tr = A Fr (5)

Td = f(m,g) (6)

11 Fd - Fr 11 < E2 (7)



If an ideal model of the manipulator is used, then el = 0 and
2 = 0. An ideal model includes the modelling of the elastic deflection
in the kinematic structure and a precise model of the floor. Therefore
the modelling has been done only using the geometric and mass data of

the manipulator . The matrix A depends on the geometric data for the set
up of the manipulator. The modelling of the vector Fd depends on the
influence of the travelling gear. Provided there is no disturbance in
the outriggers all these influences are constant. In this case the force

to pressure equation ( 1) is quite close to the real behaviour.

Unequation ( 4) and (5) could be used for diagnostic purposes. To ensure
that the components of the vectors Td, Tr, Fd and Fr are in defined
area. They have to be checked, too.

2.4 Identification

To get a good performance for stability analysis the model errors

must be eliminated . This can be done for static and quasi -static errors.

Using equation (5) and ( 6) the equation

(Tr - Td) = Te (8)

can be set up. To eliminate dynamic errors we use the equation

STe
= Te + k ( Td - Tr ) (9)

dt

With equation ( 9) a quasi-static offset Te could be used to get a

better formulation for equation (7):

Tr - ( Td + Te ) 11 < e 2 (10)

The coefficients of the matrix A could be identified using the

vectors Td ( t) and Fr ( t ) over some sampling steps.
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2.5 Requirements in hardware

For the realization of the described algorithms we require a

pressure transducer in each leg ( 4 units ). It must be ensured that the

pressure in each leg is equivalent to the force . In addition two

inclinometers to measure the two angels in reference to the horizontal

level are required.
Redundant data may be obtained while using the position signals of

the manipulator to calculate the center of gravity . Such a scenario is

available with the Putzmeister FH26 121.



3. SIMULATION RESULTS AND PROBLEMS

To test the stability controller we have built up a simulation
system for the manipulator FH26. In the simulation model the elasto-
static model of the manipulator and an elasto dynamic model for the
floor were set up. The stability controller were added to the simulation
system and some disturbances were set to the simulation system. These
disturbances were a change in floor parameter and chances in parameters
and offsets to parameters dealing with the manipulator ontriggers.
Figure 3 shows the influence of a floor lowering to the norm of the

vector Te.
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Fig. 3 Simulation of manipulator movement

The stability controller works not exact if any component of the
force vector Fd is less than zero. In that case one redundant degree of
freedom disappears. The identification of tha matrix A and the vector Te
is not possible any longer. We have to choose a sub-optimum of the
vector Fd and to control the vector F to fit your merit function.
During the phase of active controlling tie outriggers without modelling
the elastic deflections of the outriggers the supervision gets errors.
Working in the suboptimum of the vector Fd the identification of the
quasi-static model errors gets more sensible.



4. OUTLOOK

For the future we have to perform more practical tests with the
Mock Up FH26 to validate the described approach in more detail. The
results obtained so far look promising to continue the described way.

References

ill Morath, E., Die Litronic im Fahrzeugkran
VDBUM-Seminar 1991, Beitrag Nr. 17.

121 Wanner, M.C. et al., Enabling technologies for large manipulators,
ESPRIT II project LAMA, 8th ISARC 1991, page 439-446.


	page 1
	page 2
	page 3
	page 4
	page 5
	page 6

