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Abstract

A closed-form Newton-Euler dynamical model of a robot manipulator is derived. The

model generalizes previous models in two respects:

• It allows for multiple degrees of freedom per robotic joint

• It allows for arbitrary placement of a local coordinate frame for each robotic link.

The importance of such a model is that it enables a complete force analysis of the robot.

Forces and torques at arbitrary directions (not necessarily along or about the principal axes of

motion ) may be computed.

The generalized dynamic model is then applied to study the dynamics of a robot

manipulator mounted on a wheeled platform . A particular example is analyzed in detail.

That is the case of non - actuated three wheel configuration , two fixed wheels at the back of the

platform and one free-spinning wheels at the front . The analysis includes:

1. Development of conditions for the vehicle stability

2. Development of the kinematic and dynamic constraints under the assumption of

rolling motion.

3. Study of the coupling effects between the moving manipulator and the wheels.

The example is generic in the sense that it allows the formulation of a general

computation procedure that checks the constraints of the system and evaluates motion

trajectories of the vehicle as induced by the moving robot manipulator.
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I. Introduction

This paper deals with the dynamics of a robot manipulator mounted on a non-actuated

wheeled base that moves on a horizontal plane. A framework for analyzing vehicle stability,

coupling effects between the moving manipulator and the moving base and vehicle path

planning is proposed. The main analysis tool is a closed-form Newton-Euler dynamic model of

a robot manipulator. The model allows for arbitrary placement of local cartesian coordinate

frames on the manipulator links and joints with multiple degrees of freedom.

The paper organization is as follows: Section II outlines the derivation of the

generalized Newton-Euler dynamic model for a manipulator with a stationary base. In

Section III, the coupling between the manipulator and its moving base is discussed. Sections

IV-VII deal with a particular, though generic, example -- that of a base with two fixed back

wheels and a free spinning front wheel that roll on a horizontal plane.

II. Closed Form Generalized Newton-Euler Dynamical Model of a Robot

Manipulator with Stationary Base

The robot dynamical model provides the relationship between the forces and torques

acting on the manipulator links and the resulting joint accelerations at given joint positions

and velocities. Let N +I be the number of robot links numbered from 0 for the robot base

towards link N to which the end-effector is attached.

Four assumptions are commonly made in deriving the dynamical model of an open

kinematic chain. Only robot manipulators that are open kinematic chains will be considered

in this paper.

(Al) The robot base is stationary. A coordinate frame attached to the base link may be

viwed as a Newtonian ( inertial ) system.

(A2) Robot links are rigid . Thus, the relative position of any two points in a link is

fixed and does not change while the robot moves.
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(A3) The position and velocity of a point mass in link i (iE{O,N}) are kinematically

independent of the position and velocity of any point mass in a link j, where j > i.

(A4) The overall required force ( torque) at joint i , that connects link i - I to link i, is the

sum of all forces ( torques ) that act on all mass elements of links i , i+ 1,...,N

( including the end -effector and payload).

Note, assumptions (A3), (A4) are not independent of assumption (A2).

The model derived herein includes two nonessential , however useful, generalizations

with respect to existing models in the robotic literature . First, the robot joints are not

necessarily restricted to a one-degree -of-freedom motion. This is important if one wants to

take into account clearance effects and other nonactuated motions due to imperfect joint

design and implementation . Second , no fixed convention is followed in placing the local

coordinate frame in each robotic link. To facilitate the robot force analysis the coordinate

frames are placed at any location where computations of all the components of the forces and

torques are of interest . For many applications the Denavit - Hartenberg kinematic

formulation in which origins of the local coordinate frames lie on the respective joints axes of

motion [1] is adequate but some applications may require a different treatment. In [2] and [3]

for instance these origins are placed at the center of mass of each link which offers a potential

increase in the efficiency of the dynamic computation . In this paper though , computational

efficiency is of no concern . For a stationary base rigid link manipulator the force and torque

components that are not along the principal axes of motion are cancelled out by the internal

reaction forces and torques . For wheeled -base manipulators however such "side" torques and

forces have an important impact on the vehicle stability and motion . This is the focus of this

paper. Another example in which side components of the forces and torques are of interest

involves the study of deflection and critical loading of a flexible arm [4]. Obviously since all

force and torque components are of interest a Newton - Euler modeling approach is selected.
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The model derivation follows the lines of [2]-[3]. First, Newton's law is invoked for an

arbitrary point mass on an arbitrary robot link. Second, the total force is found by integration

over all mass elements. Finally, the total torque is computed.

Let of be the force, with respect to an inertial coordinate frame F0 attached to the robot

base, acting on an arbitrary mass element m at link j <N of the robot located at a position on

with respect to that coordinate frame. Then by assumption (Al):

J= m0-J
(2.1)

where (refer to Figure 2.1)

(2.2)

od1 is the position of frame F1 (attached to link 1) origin with respect to F0, and Al0is the

orientation matrix of F1 with respect to F0. Joint I may have in general multiple degrees of

freedom. These and the geometry of the links and the joint are built into the model of od1 and

0A1.

Let out and oal be the linear velocity and acceleration respectively and owl and owl be

the angular velocity and acceleration respectively of F1 with respect to Fo. Then:

OP=out +a1X or + o 1 1rJ

rJ= a1 +
w1x

rJ+ wl x( w1X r')+2 w1X u1+2 w1X Al ?J+ AI rJ
0 O- O- O 0 - O- 0- 0- O- 0- 0 l- O -

(2.3)

(2.4)

As in (2.3)-(2.4) one can now express kri and k_ri in terms of k+lri and k+1rj, wherever

k <j <N - 1. For k = j -1, by assumptions (A2) and (A3):

rJ
j- I- r'=J- I-

J +
J - 1 -

-J X
i-I- (2.5)

J J JX X-J)+ 2 UJ-1 J-I- J- I (2.6)J-1- J-1- j- 1- J-I- J-1- ""J- I-
rJ= aJ+ wJX rJ+ wJ
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Figure 2 . 1. N-link Manipulator with Arbitrary Placement of Link Coordinate Frames.
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Repeated substitution into (2.3)-(2.4) yields for j 5 N:

j-1

o=J= 1 0A
k(0k+ l+k^ X krjl

k=0

j-1

I Ak( ak+1+
Wk+1X r-'+ wk

+1 X ( ^k+i X ►"'))o- o k- k - k- k k- k-
k=0

j-1 j-1

+2
o

A k (
k-
^k+1X

k
Af(

e-
ae+1+ e-̂e

+1 XS
ki e

?J))

eak k=0

(2.7)

(2.8)

where Ske =1 for k :;v-- e, Ski= 0 for k = e, and 0Ao = I, the identity matrix.

The following short hand notation for the multiplicative operator ;Ak acting on an arbitrary

vector k 0 will prove to be convenient

i(k^) o iAk k^ (2.9)

Thus by (2.1), (2.8)) the force ofi acting on a mass element m

+ (2.10)

k=0 k=0 e>kk=0

where

o/ o(k- ak+ 1 + k^k + 1 X
k
d) (2.11)^k kj = m

is the inertial force

=mkWk+1X (kwk+lXkrj))
(2.12)

is the centrifugal force,

/keJ=2mo(k (ilk+1Xk( eue+1+e^e
+IXrj)) (2.13)

is the Coriolis force, and

Jg=MOE

is the gravity force where og is the gravity acceleration.

Note the force transformation formula:

if=,A' if

(2.14)

(2.15)
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Then it maybe found from (2.10) merely by replacing the subscript 0 by i.

By assumption (A4), the total required force at joint i is found by integrating (2.10) over

all mass elements from joint i (denoted as Ji) towards the end effector (denoted as E).

Let M' denote the mass of link j and kpi denote the center of mass of link j with respect to

coordinate frame Fk. Then:

N-l N-1 N-IN-1
F(j ► = Fk+

Fkk+
Y

F,ke +F (2.16)

k=0 k=0 fak k=0

where iF(i) is the total force acting on link j with respect to frame Fj.

E N-i
k_ I

E
wk+1X

r' Idmi= Mi
ak+i+ Wk+1X jl

i- k- k k / i k- k- kP l
J i j = max{i,k}

(2.17)

is the total inertial force

(E / ))
dm

^kk= I f Wk+1X/̂  Lk+1X
r^

e i\k- k- k

N-1

( k 1x k ))
_ Wk+1X (2.18)

Mj
i k-

j = max{i,k)

is the total centrifugal force

N-1
^,ke= 2M/

i k
Wk+1X

I\
1 ^?+1+

e-
We+1 XS

ke ep
j

i

/

e-
j = maz{ i,k,f }

is the total coriolis force, and

N-1

F
g
= Y Mp

i
g

-
-J=I.

(2.19)

(2.20)

is the total gravity force. The end-effector and payload are taken as part of link N.

The "missing link" isthe model (2.16)-(2.20) is the description of the shown positions,

velocities and accelerations in terms of the controlled joint positions, velocities and
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accelerations. This may not be a trivial task in a truly convention free kinematics, but in

principle it can be done.

Let if be the force acting on an arbitrary mass element, and it the position of that mass

element, all with respect to coordinate frame Fi. Then the torque acting on this mass element

is:

i- ii xi rX if
- (2.21)

if is given by (2.10). Again by integrating over all mass elements from link j towards the end

effector, the total torque acting on link j can be found:

where

.Nk =!-

N I

N-I N-I N-IN-1

t- 1- I 1

k=0 k=0 eak k=0

.N^^) _ Y '
+ ^- Nkk + Nke+ N

N-i

I J
=max( i,k) linkj

N-I

I J r'X

= max{i,k} link j i

ig

k+l+k'^k+lxkrj
ldmj

L" k+IX1 kWk+IXkr' I Idmj

(2.22)

(2.23)

(2.24)

N2 1J rjX( Wk+1X (oe+1+ ^f+1XS
rj 1 )dmj

(2.25)

link ]
i r k - k Z- f- ke[-

j = -ii,k,j}

N -1

I- g = MJ ip, X ig
j=i

are the inertial , centrifugal , Coriolis and gravity torques respectively.

(2.26)
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Equations (2.23)-(2.25) may further be processed along the lines shown below. As an

example the explicit evaluation of the inertial torque is shown. For a full treatment of the

other dynamics terms see [4].

By (2.2):

r'!Xi ►
kak+11 dmj=MJipJXi1

kok+11 (2.27)

rjx(1 X r1)dmJ=Mj d.X (
wk+1X

dj)+Mj ddX
J linkj i t k- k- i - i k- k- i-

+MJ.AJ. pj.XI
Wk+1X

dJ+.AjIj Aj)T(Ak
k+1

t j- t\k k s i t k-

where

k+1X
Aj J

k jp

(2.28)

IJ= J Itr{rrT)I-(
J-j
.r r T ) I dmi (2.29)

links J J- °

is the inertia matrix of link j including the actuators intertia as observed from Fi. I is the

identity matrix.

The first term in (2.28) is due to a version of the parallel axis theorem. The second and

third terms in (2.28) become zero if the origin of F; is placed at the center of mass of link j.

3. Coupling Effects Between the Manipulator and the Moving Base

The dynamic model of the previous section becomes invalid if the robot base

accelerates, however the modeling approach remains the same. One must start with an

inertial system denoted as the "room frame" FR. Thus the new modeling starting point that

replaces equation (2.1) is:

Rf=mR (3.1)
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Refer to Figure 3.1. Let FB be a coordinate frame attached to the robot base. It is assumed

that the robot is rigidly attached to its base. Thus frame F° of the robot and frame FB are

related through a constant homogeneous transformation matrix BT°.

FB=BT°F° (3.2)

In particular F° and FB may be selected in such a way that BTO becomes a pure translation.

The entire modeling of the previous chapter may now be repeated starting with FR,

going through FB, then F° etc. In other words the two-degree of freedom moving base in the

case of horizontal base motion is viewed as link B together with joint B of the robot. This

modeling approach however does not allow much insight into the vehicle dynamic features.

In this section the coupling forces and torques between the moving base and the

moving robot are studied. From the practical point of view it indeed makes sense to

"mentally" separate the manipulator from the base (each may even have its own controller).

In the case of a non-actuated wheeled base, the manipulator motion may cause the base to

move, but the base motion in return affects the robot motion. It will be shown that this

coupling can be resolved in a very simple algebraic manipulation.

Consider a particle dm on one of the manipulator links. Its total acceleration at with

respect to the room frame is the sum of the base acceleration aB and ao, its acceleration under

the assumption of a stationary base.

The total force Ft that acts on the base is:

IE E E

aB dmFt = at dm= J as dm + J
iJ J

0 0 0

(3.3)
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Figure 3. 1. Robot Manipulator with Wheeled Base.
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Let M13 be the base mass. T hp force that accelerates the base if it is not actuated is the

reaction force -Ft. Thus:

(

J

E (

J

E

MBaB = - J a, dm - J dm aB

Hence

0 0

Ma B= - Fo

(3.4)

(3.5)

where M is the total vehicle mass and F0 is the force acting on link 0 when the base is

stationary!

The total torque acting on the base is

1 J
O

E (E N

Nt= 0rXatdm=NO+ I J Cy rdmXaB=No+ I M`(P`XaB)
J 0 i=0 \

(3.6)

where No is the torque that acts on link 0 under the assumption of a stationary base. By

Euler 's equation:

-Nt=IB wB+MB( OPBXaB) (3.7)

where IB is the base inertia matrix and the base angular acceleration. Let 0h be the

vehicle center of mass position. Then:

-N=1B ( +M h X aO o -B

0h is of course time varying.

(3.8)

Equations (3.5) and ( 3.8) illustrate the coupling effects between the base and the

manipulator . These equations can be readily used for the analysis of the induced base motion
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as will be shown in the subs;,cuent sections. The reader is cautioned though that Fo and N0

represent not the manipulator true motion but the idealized motion under the assumption of

nonmoving base . Therefore Fo and N. should be viewed as planned force and torque, and

cannot be calculated on-line from measured manipulator joints, positions, velocities and

accelerations.

Equations (3.5), (3.8), although vividly illustrating the coupling effects, cannot be used

directly to determine aB and wB as no friction effects have yet been taken into account. F0,'_V"

will appear as driving inputs in the base equations of motion. The resulting aB, c)B may then

be used to evaluate the precise manipulator motion.

IV. An Example: Wheeled Base with Two Fixed and One Free Spinning Wheels

From here on a particular though generic example will be analyzed. Consider a non-

actuated wheeled robot base that moves on a horizontal plane. A particular wheel

configuration is selected for this example. However, similar analysis can be carried for other

configurations. Refer to Figure 4.1. It is assumed that the base back wheels numbered as

wheels 2 and 3 are fixed, rigid and have the same axis of motion. There is a single front wheel

(wheel 1) which is free spinning.

Let Pr, ps be the dynamic rolling and sliding respectively friction coefficients between

the wheels and the ground. It is assumed that

µr < I's (4.1)

Similarly, let Prls), )as(s) denote the static friction coefficients.

P
<

11
(s)

Nr 11 (rs) s s

Fixed wheels are restricted to roll in one direction but may slide in any direction.

(4.2)
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Let v and a be the linear velocity and acceleration respectively of the robot base and let

be the angular velocity of the wheels. Let F be the applied force on the wheel and FN be the

ground reaction force. Then the equation of motion of the fixed wheels along the direction of

rolling is:

v=a=0 if F<pr)FN (4.3)

v=Roo and Ma=F-prFN if p(S)FNSF<1'(S)FN (4.4)

Ma=F-pSFN if p(s'FN :5F (4.5)

where M is the vehicle mass and R is the radius of the wheel.

The equations of motion of the fixed wheels in the direction perpendicular to the

direction of rolling are:

v1=a1=0 if F1<11ss>F

Mat=Fl -pSFN if F1' pss) FN

(4.6)

(4.7)

where F1 is the applied force in the direction perpendicular to the rolling direction.

A free spinning wheel aligns itself at steady state with the direction of the total applied

force. Thus:

lira U1= lim a1=0
(4.8)

The equations of motion of a free spinning wheel along the direction of the applied force are

similar to (4.3)-(4.5).
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A convenient choice of a right-hu, d system FB, the base coordinate frame, is now being

taken. Its origin is placed on the ground as shown in Figure 4.1.

Let F and N be the applied force and torque with respect to FB. F and N are found

through force transformation of - FO and - N0 (acting on F0) that have been discussed in the

previous section.

Let FN1, FN2 and FN3 be the normal reaction forces of the ground on each wheel.

Let Bb = (h1, hy, h2)T be the position of the system center of mass with respect to F. Bb

varies as the manipulator moves.

The lengths s, d are as shown in Figure 6.1.

V. Stability Conditions

Necessary and sufficient condtions for the stability of the moving vehicle are:

FZ-Mg+FN +FN +FN =0
1 2 3 (5.1)

Nx-Mghy+FN d-FN d=0
2 3 (5.2)

NY +Mghx-FN s=0
(5.3)

where

F
/1
,?O,F

!v
.?O,F

h
,>- 0

1 2 3 (5.4)

Combining ( 5.1)-(5.4 ), the following stability conditions are obtained:

N
h <_ - y (5.5)

s-h
x

x Mg

h 1 N N
x

\ y

(5 6)FZ+Mg( s + d I?0
( sd

.

394



s-h h ll (N
N lFZ+Mg( s x + d l

\ S Y dX0

Conditions (5.5)-(5.7 ) need to be evaluated for every planned manipulator motion.

(5.7)

VI. Kinematic Relationships and Dynamic Constraints on the Base Motion

Assuming that the manipulator motion is planned to never violate the vehicle stability

requirements (5.5)-(5.7), another assumption is now being made regarding the type of base

motion. In this paper only a pure roll motion will be discussed. Combination of sliding and

rolling motion requires a considerably more complicated solution and is thus being avoided.

Let 4) denote the angle by which the front wheel is steered from the rolling forward

direction. If all wheels are precisely aligned, the vehicle at any given time traverses along a

circular path (the circle parameters are of course time varying), with center 0 as shown in

Figure 6.1.

Let w B, wB denote the angular velocity and acceleration respectively of the vehicle

about a normal to the surface axis of rotation that passes through 0. Let 031,02,03 be the

angular speeds of each of the wheels respectively. Then for 0:

R 101= SWBCSC 4
(6.1)

R(32= (s cot 4) - d) (,)B
(6.2)

Rf33= (scot 4+d)WB
(6.3)

395



•

4

a

at

X

Figure 6.1. Kinematics of a Rolling Base.

3 C4



where R1 is the radius of the front wheel and R is the radius of each of the back wheels.

Obviously, by (6.2)-(6.3) the back wheels must not be on the same shaft as any nonzero

angular velocity wB requires that P2 f33. The value of 4) determines the ratio between j32 and

P3. When 4=0:

WB=0 02=03 01=R2

R

R
1

(6.4)

Let rm, 4)m be as shown in Figure 6.1:

r
m

=(h2+ (scot4 -
x Y

(6.5)

4m=
cot-1((scot4^ - h

Y
)/ hx)

To find the kinematic constraint on WB note that 4), hg and by are all time-varying. Thus

shx4 + (s cot4 - h sin 24h+ hxsin 24h,

W-gyBm r2 sin2
in

Let v1, vy be the components of the linear velocity of the base:

Ux= WB rm cos (Pm V
Y

= WB rm sin 4m

Then the components of the linear acceleration of the base are:

2
ax = ux = rmcos4mwB - rmsin 4mwB + rmcos4m

WB

a = U = rsin 4w + rcos4wg +r m sin4
Y Y in m B m in OB
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(6.9)
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Finally, the assumption of pure roll motion involves a dynamic constraint with respect to the

friction forces. It is the friction force in the direction perpendicular to the roll direction that

keeps the two back wheels from slipping. Let f21 and f31 be these perpendicular friction

forces. Thus:

Is)F
f21 !5 Ps N2

f F
31 µs N3 (6.11)

For simplicity, is is assumed that the front wheel is weightless. Therefore it will react to

external forces instantaneously. Thus the perpendicular friction force on the free spinning

wheel is assumed to be identically zero.

VII.. Base Equations of Motion

The base equations of motion under the assumption of pure roll motion are as follows:

Max=Fs -pr FN
2
-prFN

3
- prFN ]

cos 4) (7.1)

May,= Fy- f2 -f3 -NrFN sin 4)
1 1 1 (7.2)

Let Izz denote the moment of inertia of the system about the z-axis of FB. Neglecting the cross

inertia terms, the torque equation about the normal axis at 0 is:

Ma
x
(scotq) -h

y
)+Ma

y
h

x
+(Izz +Ms2cot24))w B =N

Z
+Fxscot

-PrFN (sco4 -d)-11rFN (scot(p+d)-prFN scsc)
2 3 1 (7.3)

Substituting FN1, FN_, FN3 from (5.1)-(5.3) and a, ay from (6.9) into (7.1) and (7.3) results in a

system of two nonlinear coupled first order differential equations for the variables 4)(0 and
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coB(t ). The inputs to the equations are the forces F, F),, FZ and the torques N, NY, N1 that are

determined by the planned motion of the manipulator.

In addition the equations are parametrized by h,, by and IZZ that depend on the actual

manipulator changing configuration . Needless to say that only numerical solution of the

equations is possible . The motion planning problem : "How should the manipulator be moved

such that its wheeled base follows a prescribed planar trajectory" remains open.

The base will perform a spinning motion if at least one of the dynamic conditions for pure roll

motion (6.11) is violated . In that case:

f2 1 62ms4J2+ f3 1 83coSP3+ p,FN 2 82Sin W2- N,FN 3 S3sin V3

-p^FN 8 cos1P +(IZZ+M(h2+h2))w =F h -F h +N
y $ z y y z Z

where

h
bl ((s-hz )2+hy)v2 kv1•

= (P-tan-1 y
s-h

x

S2=° h2+(d-h 2)1/2
=1( d-h) ,

tP2 = tan
h

(7.4)

(7.5)

s

3 (h2+(d +hy)2)12 13 e tan
d+h

-1(
h y l

r

where cjs is the spinning acceleration. If no spinning occurs, then by substituting cas=0 into

(7.4), a constraint equation on f21 and f3, is introduced.

For an arbitrary manipulator motion the following is an algorithm for an on-line

solution of the base motion given the system mass and the friction coefficients.
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Step 1. Measurement phase Measure the manipulator joint positions, velocities and

accelerations, the base angular velocity and the angle of the front wheel.

Step 2: Compute the location of the system center of mass (hg, hy) and the moment of

inertia with respect to the base z-axis Izz.

Step 3: Compute the force and torque acting on the robot 0 link. Transform the forces

to FB with reversal of the sign.

Step 4: Compute the reaction forces on the wheels. Check stability and verify rolling

conditions.

Step 5: From equations (6.1),(6.3) predict new values of 4) and W B. These may be used

for feedback and feedforward control. Then update the value of the vehicle

linear acceleration (ar, ay).

Step 6: Solve f2 , and f31 from (7.2) and (7.4).

Step 7 Go to Step 1.

VIII . Summary

The motion planning of a moving-base robot manipulator is a complex issue due to the

coupling effects between the moving base and the moving manipulator, the changing

configuration of the vehicle and the variable friction effects. A framework for analysis has

been proposed in this paper.

The importance of taking into account force and torque components not necessarily

along the manipulator principal axes of motion has been demonstrated. This necessitated a

slight generalization to the familiar closed-form Newton-Euler dynamic model for an open-

kinematic chain manipulator.

Many open research problems exist, including the control of an actuated moving base

for precise horizontal path tracking, the control of the manipulator motion in the presence of a

moving base, sliding base motion and vehicle motion along non-planar surfaces.
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Most of the paper . evolved around a particular exa.r: ple. By no means should it he

implied that the authors advocate this particular wheel configuration. The purpose of the

example was merely to illustrate an approach to the dynamic modeling of mobile robots.

Optimal vehicle design is a separate and exciting issue.
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