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Abstract 

The ability to obtain 3D information is vital for many applications in construction, 
manufacturing, and vehicle automation and autonomy. TOF (Time-of-Flight) sensors, which 
provide depth information at each pixel in addition to intensity, are becoming more widely 
available and more affordable. This paper examines the applicability of TOF sensors to 
several real world problems that can be relevant in automated assembly or sorting 
applications. The setting is an indoor environment, and the experiments investigate the ability 
of TOF sensors to provide sensing for a robot whose task is to handle products moving on a 
conveyor belt. The range information is used to compute the dimensions of- and to recognize- 
objects moving on a conveyor belt. The geometric and recognition information is then passed 
on to the robot for further action. The results indicate that there are immediate opportunities 
for the use of TOF sensors in automating such applications. 
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INTRODUCTION  

The dynamic nature of a typical construction site requires fast real-time modeling to aid in 
decision making. Therefore real-time modeling of a construction site necessitates fast 3D data 
acquisition and processing system. Laser scanners produce high quality dense 3D dataset (a 
typical scan contains millions of points) of static objects only. In addition to this, the data 
acquisition and processing is slow and renders it infeasible for real-time modeling. However, 
3D range cameras offer another alternative by facilitating affordable, wide field-of-view, 
automated static and dynamic object detection and tracking at frame rates better than 1Hz 
(real-time).  

Range imaging technology extends the potential of current 3D imaging systems such as laser 
scanners or stereo vision. Range cameras provide a combination of amplitude, intensity and 
dense range (i.e. distance) information at every pixel of a two-dimensional sensor array very 
quickly, thereby capturing dimension and position of objects in real-time. The geometric 
information aids in locating moving objects such as a person moving in a construction site or 
an object moving on a conveyor belt. Furthermore, they can potentially be used in vehicles 
for detecting obstacles to avoid crashes. In places where machines are automated, range 
cameras can be used to detect the position, motion and speed of objects and people entering 
the workspace of automated machines in real-time. Such real-time detection enables better 
coordination of the operations of humans and machines in the work space.  
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BACKGROUND   

Range cameras hold promise for various applications in construction such as obstacle 
detection for enhancing work zone safety, monitoring and tracking of workers, project 
progress monitoring, etc. Gonsalves and Teizer (2009) performed tracking of human targets 
(construction workers) by segmenting and modelling the segmented object using a star 
skeleton model. To trace the path of the construction workers, a particle filter was used. 
Furthermore, motion analysis was performed by determining the angles between the different 
body parts to analyze the posture of the workers.  

Teizer et al. (2007) demonstrated that range image data provides feedback regarding the 
location of objects in the sensor field-of-view, which is of use for active safety features and 
tools for safe operation on a construction site. To automate heavy equipment operation, real-
time object recognition and modelling is necessary (Son et al. 2008). Using a data driven 
approach, the object of focus was extracted from the background and was modelled using a 
convex-hull algorithm. The generated model demonstrates the potential to assist in movement 
and operation of automated equipment. Kim et al. (2009) proposed a technique to model 
static 3D objects for use in automated operation of construction equipment. The technique 
consisted of four steps: data acquisition, pre-processing, segmentation and 3D model 
generation. Individual objects are segmented automatically by a split and merge algorithm. 
To generate the 3D model, the feature points of segmented objects were connected using a 
convex hull algorithm. 

Hansen et al. (2008) propose a method to track people working in an occluded environment. 
Through a homographic mapping, the range data points are projected to the ground plane. 
Each of the individual cluster pixels are tracked using an Expectation Maximization (EM) 
algorithm for maximum likelihood estimation of the parameters of a mixture of Gaussian 
clusters in the flat map. To track moving objects around heavy equipment, a 3D spatial 
modeling technique approach was proposed by Chi et al. (2007). The 3D spatial information 
was used to build an occupancy grid representation, whereby the grids were clustered to 
represent objects. For identifying the objects, Hausdorff-based image matching was used to 
compare the captured objects with priori models from a predetermined object dataset. Teizer 
et al. (2007) used an agglomerative hierarchical approach to detect, model, and track the 
position of static and moving obstacles. This work improves the perception and awareness of 
operators regarding the potential obstacles surrounding them in real-time. 

To capture detailed features of an object it is necessary to have a high resolution image, 
however, existing 3D range cameras have limited X-Y resolution. Theobalt et al. (2007) have 
proposed that super resolution methods typically used for color images produce high 
resolution 3D data of a scene using 3D range camera. To effectively reduce noise in the 3D 
spatial data acquired by range cameras, a probabilistic sensor model was proposed by Lytle 
(2009). The work shows, that a point cloud of a synthetic 3D image generated by the 
probabilistic model appears representative of the dataset that would be captured by an actual 
3D range instrument. The work contributes towards noise removal algorithms for improving 
the operation of range imaging systems.   

In this work, a TOF camera is put to use in an indoor industrial environment. Specifically, the 
3D range information obtained from the sensor is used to extract useful information about 
objects moving on a conveyor belt. Two applications are considered: First, the dimensions of 
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boxes moving on a conveyor belt are measured; Second, different construction-relevant 
objects are recognized and classified. Novel methods are described to efficiently process the 
3D information for both applications. 

BELT APPLICATIONS 

Figure 1 shows the setup of the experiment. The camera is mounted facing the conveyor belt 
(see Figure 2). Different target objects are placed on the belt. The belt is moved at different 
speed and the objects placed on the belt are segmented. The point cloud is then extracted.  
Next the point cloud is processed to obtain useful information about the object. The 
information is passed to the robot for further handling of the object.  

  
Figure 1: Setup of Experiments Figure 2: Transformation of the range data from camera   

coordinate system to belt coordinate system 

Coordinate Transformation 

The TOF sensor outputs range data of the world within its field-of-view in spherical 
coordinates. The spherical coordinates are converted into Cartesian coordinates, where the 
origin of the coordinate system lies at the center of camera, as explained in the next section. 
The 3D point cloud in the camera coordinate system is transformed to the belt coordinate 
system with the origin at a known reference point. The coordinate transformation is required 
for the following two reasons: 

 The robot and the range camera need to agree on a coordinate system so that the 
measurements from the range camera can guide the robot. 

 In the belt coordinate system, the z -axis is normal to the plane of the belt.  Aligning 
the coordinate axis in such a manner simplifies extraction of object point clouds on 
the belt by referencing points above the belt plane (z > 0) and within the confines of 
the belt boundaries.  

Estimating the Belt Frame 

The following procedure is used to estimate the belt coordinate system, and is carried out 
only once at the start.  Let u   R be the 3D position of a point in the camera coordinate 
frame. The belt is manually segmented using the intensity image as shown in Figure 3. The 
corresponding range data for the belt is selected. Figure 4 shows the point cloud in the 
camera coordinate frame, with the points corresponding to the belt shown in green. Let S be 
the set of 3D positions of the pixels belonging to the belt.  

Conveyer Belt 

Sensor 
Robot Arm 
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  Figure 3: Belt selected using intensity image Figure 4: Point cloud in camera coordinate system 

The normal e of the plane fitting the set of points is obtained by the following equation:  
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where d is the distance from the origin to the place, which is assumed to be 0. The above 
equation is a non-linear optimization problem whose solution is the eigenvector associated to 
the smallest eigenvalue of the covariance matrix C, which is defined to be C.  
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where û is the mean of the points in S. Let E be the eigenvectors of the covariance matrix. 
The eigenvector corresponding to the smallest eigenvalue provides the normal e to the plane 
of the belt. A point u is transformed to the conveyor belt coordinate system (v  R2) by the 
following equation 

)ˆ.( uuEv T   

All points lying on the same plane as the belt plane have z ≈ 0 in the belt coordinate system. 
All the subsequent computations are performed in belt coordinate system. The coordinate d 
system is then translated to a known reference point. This can be achieved by changing the 
mean point û  with the reference point. Figure 5 shows the point cloud of the belt in belt 
coordinate system. The blue contour represents the bounding polygon that was selected from 
the intensity image.  

Occupancy Grid 

After transformation of the belt point cloud to the belt coordinate system, it is represented by 
a rectangular occupancy grid. Occupancy grids are based on the principle of allocating range 
points to a prepared world which is divided into a grid system of variable or fixed voxels. In 
this case, a 2-dimensional occupancy grid is used for the belt. The convex hull of the belt 
point cloud is computed and the minimum bounded rectangle (MBR) of the convex hull is 
computed; shown in red in Figure 5. The MBR is meshed with a grid size of .01m. The belt 
points are mapped to the occupancy grid. Each grid location is assigned a value, which is the 
average z value of the points falling within the block. If no point falls within the block, the 
block is assigned zero. This representation of the belt point cloud is shown in Figure 6. This 
representation has the following benefits: 
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 Range data for objects close to the camera is denser than for objects that are further 
from the camera.  The variable density as a function of distance is apparent in Figure 
5. The occupancy grid converts the range points to a surface, given by a height 
function defined over the occupancy grid as shown in Figure 6. 

 The number of data points representing a scene are reduced and hence the memory       
and computational time. 

 The effect of noise is also reduced because z values of all the points falling with a 
block are averaged. 

 The resulting rectangular occupancy grid can be visualized as an image, leading to the 
use of image processing techniques to process the objects on the belt.  

 
Figure 5: Point cloud of the belt in belt 
coordinate system. Blue: Convex hull. Red: 
Mininum bounded rectangle 

Figure 6: Rectangular occupancy grid and belt 
surface map 

The range measurements are based on measuring the phase of the reflected signal. The signal 
may get reflected by multiple surfaces before returning to the sensor. In this situation the light 
travels by the direct as well as indirect path and the distance is then the weighted average of 
the path distances. If this happen, the belt point cloud may not lie on a plane. To account for 
that, we learn the surface of the belt using polynomial approximation and evaluate the surface 
at each grid location.   

Extracting Point Cloud of Objects on the Belt 

The steps explained in the previous section are carried out once using the first frame. In the 
subsequent frames, following steps are carried out to extract the point cloud of the objects on 
the belt. Only 3D range data is used and the intensity information is ignored.  

 Range data obtained from the sensor is transformed to the belt coordinate system. All 
the points falling outside the convex hull of the belt are discarded.   

 Points within the convex hull are mapped to height values defined over the occupancy 
grid, which is the average z value of all range points falling within a block. If no point 
falls within the block, the block is assigned the value zero. The value assigned to each 
grid location is the distance of the point cloud to the belt.  

 The distance value at each grid location is subtracted from the polynomial 
approximation of the belt evaluated at that grid location. If the result is bigger than a 
predefined threshold, the point belongs to the object on the belt; otherwise it belongs 
to the belt. 

The result of applying the above steps to a sample frame is shown in Figure 7. Figure 7(a) 
shows only the range points lying within the bounds of the belt. Red points belong to the 
objects on the belt, whereas green points belong to the belt.  Segmentation results from other 
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views are shown in Figure 7(b-d).  Two of the boxes in the intensity image appear to be 
connected and it may not be easy to identify individual boxes using only the intensity image. 
However, they are easily identified, as can be seen from the top view. 

 
(a) Intensity 

image 
(b) Segmented point 

cloud 
(c) Top view of 
segmentation 

(d) Side view of 
segmentation 

Figure 7. Extracted point cloud of the objects in different views. 

Processing Objects on the Belt 

By following the procedure explained in the previous section, point clouds of the objects on 
the belt are obtained. The point clouds are further processed to extract useful information 
about the objects such as their dimensions or their classification.  

Extracting and Computing Dimensions of Boxes 

The first application is to find the dimensions of the boxes moving on the conveyor belt. The 
following steps are carried out to measure the dimensions of the boxes. 

Determine the number of boxes:  After processing according to the previous section, a 
height mapping of the belt is obtained, z see Figure 8(a). Thresholding produces a binary 
image as shown in Figure 8(b).  Morphological operations applied to the binary image fill 
holes and remove isolated points, producing the image in Figure 8(c). Specifically, Matlab’s 
bwmorph is used with the operation majority. Then, bwlabel is used to find the number of 
distinct objects as shown in Figure 8(d), where each object has a unique color. Similarly, 
bwareaopen is used to discard connected objects have fewer than p pixels.  

Measure dimensions of each box:  To determine the dimension of each box, the point cloud 
corresponding to each box is projected back to the belt, and a minimum bounded rectangle 
(MBR) is fitted to the two dimensional point cloud as shown in Figure 8(e). 

 

Table 1: Mean and standard deviation of the area of the box moving on the conveyor belt. 

Int time Belt speed Orientation 1 Orientation 2 Orientation 3 AV 
30 40   .0748 

  .0023 
  .0766 
  .0041 

  .0768 
  .0025 

  .0761 
  .0030 

30 60   .0762 
 .0032 

  .0772 
  .0027 

  .0777 
  .0024 

  .0770 
  .0027 

60 40   .0771 
  .0018 

  .0759 
  .0029 

  .0761 
  .0023 

  .0764 
  .0023 

60 60   .0755 
  .0036 

  .0778 
  .0023 

  .0778 
  .0024 

  .0760 
  .0028 

To determine the accuracy of the procedure, the area measurements were carried out at 
different belt speeds, box orientations, and sensor integration times.  The results are tabulated 
in Table 1. 
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Classifying Construction Tools 

The second application is the classification of construction tools moving on the conveyor belt 
using the 3D point cloud obtained from the sensor. Recognizing/classifying 3D objects is an 
important task in many applications and it has gained a lot of attention, see for example 
Ajmal S. Mian (2006), Bronstein et al. (2005), Frome (2004) and Johnson (1999), and the 
references therein.  Most methods work by extracting local or global geometric features from 
the 3D surface. The features are translational, rotational and size invariant. Local surface 
descriptors are more useful when occlusion occurs (Li and Guskov 2007).  Two most widely 
used local surface features are the estimated surface curvature and normals (Rusu, 2008). 
However, they are highly sensitive to noise, which makes them unattractive for 3D object 
recognition using noisy TOF sensor’s measurements.  

   
(a) Height mapping 

  
(b) Threshold height mapping (c) Cleaning the binary image 

 

 

 
(d) Labelling the unique regions  (e) Computed statistics of 

detected boxes 

Figure 8. Processing the point cloud to detect boxes and compute associated statistics. 

The eigenvalues of the Laplace operator have also been used for object recognition for both 
the 2D images (Khabou 2007) and 3D (Reuter 2006). The eigenvalues are tolerant to noise 
(Khabou 2007), and depend only on the intrinsic geometry of the object.  In this work, 
eigenvalues of the Laplacian are used for object recognition. However, this work differs from 
the previous approaches to object recognition using eigenvalues in several aspects. First, the 
above mentioned approaches to object recognition using eigenvalues require the complete 
model of the object. In our case, the TOF camera outputs only partial 3D point cloud of the 
objects in view. Secondly, the target object has to be first detected in the scene and then its 
point cloud extracted from the background. The resulting point cloud is then processed for 
object recognition.  

The algorithm is divided in two phases, a training phase and a tracking phase.  In the training 
phase, the eigenvalues of the n objects that are to be recognized are computed from the 
extracted point cloud. The objects are placed in different orientations in front of the sensor. A 
total of n support vector (SV) machines are trained on the computed eigenvalues to classify 
each object from the rest. In the testing phase, the eigenvalues are computed and fed to the n 
binary classifiers (SV machines) for classification. 
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Eigenvalues of the Laplacian 

To compute the eigenvalues of the Laplacian, the graph Laplacian is constructed. The graph 
Laplacian is a matrix L = D - W, where W is a matrix given by 

 










 


otherwise
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and D is diagonal weight matrix with 
j

ijii WD . Laplacian L is a symmetric, positive semi 

definite matrix. Compute the eigenvalues of the generalized eigenvector problem: 

 DL   

where   and   are the generalized eigenvectors and eigenvalues of the laplacian L. The 
eigenvalues are k  ...0 21 . Leave out the eigenvalue 0, and use the next k 
eigenvalues as a feature vector corresponding to the point cloud.  

Experiment 

Six construction objects (elements of formwork; a helmet; an extrusion) of various sizes and 
shapes were considered as shown in Figure 9. In the training phase, the objects were placed in 
10 different orientations. Some of the orientations of the first two objects are shown in the 
bottom row of Figure 9. In each orientation, 10 different measurements were taken.  The 
Laplacian eigenvalues from the resulting 600 points clouds were computed.  14 eigenvalues 
were retained. Figure 10 shows the means and standard deviations of the eigenvalues of the 
six objects.  The eigenvalues are invariant to orientation.  The small variations present in the 
eigenvalues arise from incomplete sensing of the objects due to occlusion. 

 

 
Figure 9. Objects recognition: (a) First row: six objects used for recognition. (b) Bottom row: Sample 

orientations of the first two objects 

Six binary Support Vector Machine (SVMs) classifiers were trained on a dataset of 600 
eigenvalues to separate each object from the rest. For the SVMs a Gaussian kernel was used.  
For testing, the objects were placed in different orientations and recognized using the SVMs. 
If two or more SVMs produce a positive output, it is taken as an error. The results are 
tabulated in Table 2. The last three columns show the computed and averaged eigenvalues 
from 3, 5, and 8 consecutive frames that were fed into the SV machine. The last row lists the 
total error. 
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Figure 10. Mean and standard deviation of each object’s eigenvalues. 

 
Table 2: Success rate of recognizing the six objects. In last three rows the eigenvalues computed 

from 3, 5, and 8 consecutive frames are averaged. 

Class Success Rate 
(Train) 

Success 
Rate (Test) 

Success 
Rate (Total) 

Success 
Rate (av 3) 

Success 
Rate (av 5) 

Success 
Rate (av 8) 

Obj 1 100% 97.8% 98.9% 100% 100% 100% 
Obj 2 97.9% 95.2% 96.6% 95.8% 97.4% 99.2% 
Obj 3 97.9% 95.7% 96.9% 96.6% 96.6% 99.2% 
Obj 4 100% 99% 99.5% 99.2% 100% 100% 
Obj 5 100% 98.5% 99.3% 99.2% 100% 100% 
Obj 6 100% 100% 100% 100% 100% 100% 
Total 95.9% 86.3% 91.2% 90.7% 94.1% 98.3% 

Conclusion 

This paper examined the utility of Time-of-Flight sensors for automatically detecting, 
processing, and recognizing construction objects on conveyor belts.  A methodology for 
extracting the individual objects was described, together with a classifier strategy for 
identifying distinct classes of objects on the conveyor belt.  The classification could be used 
to isolate and bin the distinct objects.  Future work will close the loop using an actual 
manipulator. 
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