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Abstract

To enable a two -arnt manipulator system to perform

complex cooperating tasks such as carrying ci rigid object,

establishing a contact to a surface, grinding, etc ., a non-

linear multiple input system should be solved. We apply an

approach to on - line automatic learning of a B-spline fuzzy

controller: This controller model directly connects the sen-

sor inputs to the compensation motion. By using the adap-

tation of control actions in all possible situations through

practising of the robots in the real environment , uncertain-

ties of the robot - object model can be taken into account.

The compliant motion controller of the robot system can

be adapted to new situations in a short time thanks to the

on-line learning approach.

1 Introduction

In some areas of automated construction such as trans-
port of objects with large size or heavy weight and assent-
bly of these objects, multiple small manipulators or hu-
manoid robot with two arms can find meaningful applica-
tions. In contrast to the independent usage of expensive
huge manipulators , the cooperation of multiple robot arms
can provide flexible and scalable solutions , :) these com-

plex tasks.
This work discusses the problem of automatic learning

of a controller which guides the motion of one robot arm
to cooperate with the other one. Based on the force and
torques measured on manipulator joints or wrists, the mo-
tion of the robots must be controlled so that neither the ob-
jects nor the robots are damaged . For example, in the two-

arm transportation task, the measured forces and torques
on the two manipulator wrists should be kept as small as

possible, and in a two - arm grinding task, be kept at a cer-

tain desired value.
A lot of research work on this problem employed the

approach of modelling the manipulator dynamics and corn-
puting torques , e.g. [7]. If the dynamic model of a ma-
nipulator is a priori known, such an approach supplies an

explicit physical interpretation of the motion-force process
in form of differential equations. Therefore, stability of

such a control system can be analysed. Unfortunately, for
compliant motion control using industrial robots, neither

the parameters in the dynamic model of the robot is avail-
able nor is there a possibility to access the joint controller

directly.
Another important approach is the active two-arm co-

ordination based on forces and torques measured in the

Cartesian space, e.g. [8, 1]. The compliant motion is re-
alised by adjusting the stiffness of the controller using any

type of PID control, the second-order low pass filter algo-

rithm, or in frequency area. Since there are numerous un-
certainties in a real robot model, like backlash, object inter-

nal tension forces, the imprecise modelling of real inertia

parameters, etc., it is desirable that the stiffness of such a
compliant motion controller can be automatically adapted

to different robots, objects and manipulation tasks.

Robot learning aims at generating robot software in an

evolutionary way. Recently, some work using learning has
been reported. Off-line supervised learning [4] must utilise

data from human demonstration, and it cannot be guaran-

teed that the optimal controller is trained even if the hu-

man instructor demonstrated his best skills. On-line learn-
ing does not need the extra training phase anymore. [5]
discussed the training of a fuzzy-neural controller fc- posi-

tion/force control through back-propagation and gave some
simulation results. To train a controller for contour track-
ing based on force feedback, [6] used a neural network
method. Reinforcement learning was applied in one-arm

pendulum swing-up problem [3].

In this paper we present a practical approach for learn-

ing the nonlinear relation of the forces/torques and the

compliant motion in the Cartesian space. For this pur-

pose, the B-spline model [9] is employed, which can be

classified into a neuro-fuzzy method. Its basic idea of par-
titioning input space with overlapping functions coincides

with the CMAC [2] principle. Our early experiments with
the B-spline model on numerous benchmark problems of
modelling and also in mobile robot behaviourlearning [10]
have shown the good modelling capability of nonlinear re-
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lations, smooth output and rapid convergence of learning.
In this work, the principle of B-spline controllers is applied

to the learning of compliant motion. Our experiments with

real robot systems show their suitability in typical two-arm
coordination tasks.

2 System and Problem Description

We use two PUMA 260 industry manipulators hanging
faced down (Fig. 1). Each manipulator is equipped with
a force/torque sensor (type JR3 67M25A) that is mounted
between the last (sixth) joint and a pneumatic two-finger
gripper.

Figure 1: The two Robots holding a rigid object with two
parallel jaw-grippers.

2.1 Motion in Closed Kinematic Chain

The basic idea of moving the rigid object itself instead
of each robot arm is to put both manipulators in a single
kinematic chain which meets the demand of force control.
When moving the object through the space without com-
pensation , both manipulators make different position errors
which are caused by the joint controllers and the piecewise
trajectory generation . Therefore, undesirable forces and
torques can be measured as shown in Fig. 3. These forces
and torques are to be minimised.

2.2 Compliant Motion

We adopt the principle of compliant motion which
makes the manipulators behave similarly to an ideal spring.
When s is a displacement and C is a spring constant, theforce that is exerted on a body is given by Hook's law:

(2.1) F= -C - s.

The minus sign shows that the force tends to move the body
back towards the equilibrium position at s = 0. For more

dimensions (forces and torques) the following compliance
function can be defined:

LdO(t)J - C l 7 (t)J

Where C takes the part of the spring constant. It is a 6 x 6
matrix expressing the programmed compliances in a spe-
cial coordinate frame.

Let the robot position with respect to the base frame B be
x(t). It can be modified by dx as follows:

(2.3) x(t + 1) = Y(t) + da;(t).

The orientation expressed in the base frame B is R(t) and
has to be modified:

(2.4) 7Z(t + 1) = 7Zdo(t)1Z (t)

with 7Zd,^(t) = Rot(zB,6z(t))Rot(yB,bv(t))Rot(ie,6(t))
and do (t) _ (d^(t),by(t),^_(t))T. More details can be
found in [8].

3 Fuzzy Control Based on B-Spline Model

The components of the C - matrix are unknown and can
vary with the robots position and orientation as well as

with the environment. Therefore, it is desirable that the

nonlinear stiffness parameters can be automatically deter-
mined by the controller itself. In the following ie briefly

show that a B-spline fuzzy controller provides an appropri-
ate model.

In a B-spline fuzzy controller, the membership func-
tions are B-spline basis functions. Details can be found in
[9]. B-splines of low orders can be represented explicitly
instead of recursively, which allows a much faster calcula-
tion. In this work, we employ B-spline basis functions of
third order since a). they allow a good balar.-e between cal-
culation speed and smoothness ; and b). sufficient locality
enables the convergence of learning.

3.1 Convergence of Learning

There are some properties such as "partition of unity",
"local support" of the B-spline model that bring the rapid
convergence for supervised learning. A general multiple-
input B-spline fuzzy controller can be explicitly repre-
sented as:

y(x)=^...^d,^...;q^ (x,)
i1=o iq=o i=t

where xj is the j-th component of x.

(3.1)
rnq 9
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In a B-spline fuzzy controller, there is one control vertex

for each rule, which fires to a grade Fliq_t N ' (xj).

For an input vector 1, if the desired output' yd is known,

the learning function by using gradient descent based on

the quadratic error function E = 1(y, - yd)2 (yr is the

real output value of the current trained controller) can be

derived:

(3.2)
dil,i2,..,iq (t + 1) + Ad il,i2....'1q

where

(3.3) Adii2,...,iq (t) = -E DE, q ( )
C^Cl002," . t

= E (yr• - yd) f Nfi' (Fl),
j_r

with the learning rate 0 < e < 1.

In [91 we showed that the error function E is a convex
function for a certain partition of input space. Therefore,
the learning of control vertices converges rapidly.

3.2 Rapid Reinforcement Learning

A general unsupervised learning method for multiple-
input-single-output system was presented in [ 101. Assume
that the Z-component of the translational part of one of the
manipulators is to be controlled. To design this controller,
the desired output for a giv±n input vector is unknown.
However, it can be assumed from Eqn. (2.1) that the differ-
ence (y,. - Yd) is somehow proportional to (F„r - Fz,d),
the difference between the real and desired force. If such
a physical model is embedded in the learning process, the
adaptation of control vertices, which is normally a rein-
forcement learning problem, becomes much simpler.

To initialise the control vertices, the expert's estimation

values can he set if they are available. Otherwise, all con-
trol vertices are initialised with zero. In every control cycle
(20 ins in our experiment), the output is added to the Z-
component of the translational part of the corresponding
transformation. By using the feedback information from

the measured resulting forces, the control vertices`can be
improved to get a better result in the next control cycle.
The modification of a control vertex is a slight variance
from Eqn. (3.3):

(3.4)

Adil,i2,...,i, (t - 1) = E (Farm - F-,d)
q

H r:'(xj ( t - 1)), with 0<e<

Because is a result of the controller's behaviour in

the last control cycle (if there is no delay), the vertices of
the last instead of the current cycle are modified. There-

fore, the input values of the last control cycle are used.

4 Implementation Issues

4.1 Inputs/Outputs for Compliant Control

Assume that the two robots should carry a rigid object

together along a specified trajectory. For such a task we
adopt the strategy that both robots are controlled. We de-

sign four controllers for each robot: tool- X, Y and Z di-

rection and the rotation around the approach vector of the

tool coordinate. Since the rotations around tool X- and Y-
axes play a secondary role in tasks we investigated, they are

neglected to reduce computation burden in a time-critical

control cycle.
After experimental factor analysis, the first three inputs

of each controller are selected as the related force, torque

and the distance between robot shoulder and wrist. The
third input can be viewed as an estimation of the moment
of inertia which results in different compliant parameters.
These inputs are modelled with B-spline basis functions of

the third order (Fig. 2) which enables the continuity of the

second differentiation of each controller output and can be
evaluated within a relatively short computation time. The
knots near the zero areas are selected with a rather small

distances so that the slight forces can be considered in a

finer resolution.

Figure 2: Partitioning the force input with B-spline basis
functions of order three for the translational Z controller.

4.2 Anti-Drift Solution for Two Robots

For contact motions, both of the robots should be con-

trolled because not only the internal forces between the ma-
nipulators are to be minimised but also the contact forces

must be maintained.
Such a controller will have an unpleasing drift effect

which is a result of the slightly different calibration. While

sensor A detects no force, sensor B might measure a small
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value. The corresponding robot B will make a little po-
sition correction to reach the desired force, which exerts
a small force on sensor A. If such an effect continues to
exist, both robots may drift from the desired trajectory.

One solution is to limit the value of the integrated con-
troller output. This means that the robots are allowed to
leave the desired trajectory, but only in a certain small
range that is just as much as needed for the internal force
minimisation. For this purpose, we introduce another feed-
back to the cost function for learning, i.e. the drift from the
desired trajectory. We suggest the following learning func-
tion:

3
(4.1) Ad;,.i,.....t„(t-1) =e(F:.rcu-F:,a+(y.z(t) ))

9

J]Nl'(xj(t-1))

j=1

with 0<e<1.

If the manipulator is near the desired trajectory, z(t) is
very small and the linear part (F_,r(q-FZ,d) plays the major
role in modifying the control vertices. If the manipulator
drifts away from the desired trajectory, z(t) increases and
the exponential part (y . z(t)3) becomes more and more
significant. -y can be used to adjust the effect of the ex-
ponential part for different drift allowances. The variables
z(t) as well as x(t), y(t) are used as the fourth input of
each controller respectively.

4.3 Repeatedly Practising

Generally, the learning process is performed in the fol-
lowing sequence:

1. Read the input values for the B-spline fuzzy con-
trollers.

2. Calculate the controllers output and updating the
SENSOR transformation.

3. Store the input values xj(t) of the current step in a
ring buffer.

4. Modify the control vertices as described in (4.1).

This sequence is repeated in every control cycle until
a task is finished. The modified control vertices are'used
immediately in the next control cycle. The learning proce-

dure for one complete task is called a practice step, which

should be repeated several times so that for the same task
the control vertices are adjusted optimally. Our experi-
ments show that the learning rate a directly influences the

convergence speed. If a is selected too small, the learning

process needs a large amount of time. If a is too large, the

learning procet ure can cause oscillation. Our experience

of selecting ( is that starting with an initial value, e.g. 0.01,

e is divided by two or more after a few practice steps. A

minimum value of e has to be set , e.g. 0.001 in our experi-

ment.

5 Experimental Results

In our early work we tested the on - line learning ap-

proach on a one-arm screwing problem , [l l]. In the fol-

lowing, we briefly present the results of several typical ex-

periments: a) Two-arm transport of a rigid object; b) Two-

arm grinding; c) Two-arm peg- in-hole.

5.1 Two-Arm Motion in Closed Kinematic Chain

The first task is the transport of a wooden ledge with
the two robots (Fig. 1). Fig. 3 shows a clear comparison of
controlled and uncontrolled motion.

(a) (b)

Figure 3: A comparison of the resulting force (a) in Y-
direction (approach vector) and (b) in Z-direction.

Fig. 4(a) shows that the mean-squared (MS) force error
converges. Fig. 4(b) visualises the control surface, the rela-
tion between the correction motion in X-direction and two
inputs while keeping the other two inputs constant.

5.2 Grinding Motion

The robots are also applied to some contact motions in
which the ledge is moved along a metal bar while main-
taining a certain contact force (Fig. 5(a) and (b)). Fig. 5(c)

presents the results after several practice steps. The force

profiles depicted in this figure can be interpreted as four
phases. The first one takes about 6 seconds and was logged

while the ledge is approaching the bar . The peak of about
-23 N indicates that the ledge establishes contact with the
bar. It is caused by the control cycle rate of 20 ms and

another 20 ins delay. It is noticeable that there is no over-

shooting reaction after the peak. During the next 7 to S

seconds, the ledge is moved along the bar with a given

contact force of -5 N. When the ledge is pulled off the bar
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Figure 4: Visualisation of the learning results. (a) Average
MS force error of one robot with respect to the practice
step; (b) The control surface of the compliant controller in
X-direction.

and moved back to the starting position, the force in Z-
direction resumes the value of zero. The small but constant
force under contact in X-direction originates from the fric-
tion caused by the motion.

5.3 Searching a Hole

The ledge of the last experiments has a hole. Our next
experiment is an operation of putting the hole of the ledge
onto a bolt (Fig. 6(a)). The operation was splitted into
three phases that are characterised by the force profiles in
Fig. 6(b). The first phase [0, 7s] is the approach motion that
finished with the contact between ledge and bolt, which can
be recognised by the peak. It is followed by a spiral search
phase [7s, 14s] to find the bolt. When the desired contact
force (-3.5 N in our experiment) shrinks to zero, it is as-
sumed that the hole has been found and the ledge can be
slicked on the bolt (the third phase up 17 sec.). Here the
termination condition is very critical since the contact be-
tween ledge and bolt should not be lost.

Fig. 7 demonstrates another successful experiment: the
two arms carry the ledge with a fastened block, insert it
onto a tight slot, then push it along the slot.

6 Discussions

One advantage of the proposed approach is the direct
mapping of the inputs (forces and torques) directly onto
the outputs (the compensation motions). Such a model can
be interpreted with linguistic rules which better reflects hu-
man intuitive knowledge. Another advantage of this ap-
proach it that with the help of the robot's self-practise in
the real-environment where it will experience, a good con-
troller can always be found for a specified task. Uncertain-
ties in the robots and the manipulated object can be taken

(a)

(b) (C)

Figure 5: Moving a wooden ledge along a metal bar. Dur-
ing the contact situation the desired force in Z-direction
is -5 N. (a) The global view; (b) The local view; (c) The
resulting forces.

into account in the input-output B -spline model (the model
is in the real world itself).

One aspect to be considered in general cases is the learn-
ing speed . In the compliant motion , the error function is
approximately proportional to the change of the controller
output . Thanks to the local properties of the B-spline
model , the learning process converges very rapidly. If such
a condition is not fulfilled , test motions must be introduced.
Generally speaking, the number of the test motions is 3°,
where s is the number of outputs, since for each output,
three states (+, 0, -) should be tested. In fact , we applied
such an approach to the same learning problem , but the
learning time is significantly increased . As a conclusion, it
can be summarised that if parts of the physical models are
available , embedding it in the evaluation ( fitness) function
can accelerate the learning.

Our future work is focused on the generalisation of the
controller using skill transfer . The local support property of
the B-spline model brings rapid convergence of the learn-
ing, but also the disadvantage of weak generalisation abil-
ity. That demands a sufficient training data set in case of
supervised learning . Fortunately in our on-line learning,
the training data are generated in every control cycle. Af-
ter repeated practices, almost all the typical "situations"
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(a) (b)

Figure 6: Searching for a hole with two arms. (a) A local
top view of the experiment system; (b) The resulting forces

in Z-direction.

constructed by the input forces/torques are experienced by
the controller, and the appropriate control action can be
learned. In principle, the robots learn lifelong. Obviously,
the generalisation of one control skill to another task may
be possible if symbolic rules are extracted from the B-
spline fuzzy model.
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