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Abstract : An algorithm that employs visibility graph approach to generate a
minimal L1-metric obstacle avoidance path in CNC concrete placement is
presented . A set of pseudo-obstacles that represent nodes in a relational
structure called Rectangle Adjacency Graph (RAG) is introduced during
construction of visibility graph. Shrinking of pseudo -obstacles and growing of
primary obstacles such as elevator shafts results in an efficient network for
generating minimal L1-metric paths from a given source location to a target
location in concrete floors. Secondary obstacles such as column bars are
avoided using geometric and topological relationships stored in the RAG.

1. INTRODUCTION

A "constrained path " problem is formulated as follows: there is a set of
objects that are polyhedral in space or polygonal in plane called " obstacles."
The problem is to find a possibly shortest path in the applicable metric between
the given source and target points without intersecting the interior of any
"obstacle." Variants in algorithmic approaches to solve " constrained path"
problems for automated construction have been discussed in Kunigahalli et al.
[ 1]. A relational structure called RAG has been developed by Kunigahalli et al.
[2]. RAG stores the topological relationships among geometric entities required
to solve motion planning problems in automated concrete construction. This
paper describes a visibility graph approach to generate a local obstacle
avoidance path between two nodes in the RAG.

A visibility graph G = (V, E) is an undirected graph whose nodes
correspond to geometric entities , such as vertices or edges. Two nodes u and v
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of a visibility graph are connected by an edge u, v e E if the geometric entities
associated with nodes can see each other. Analysis of visibility graphs is a
challenging problem as combinatorial structure of visibility graphs is not fully
understood. As of date, there is no polynomially bounded algorithm to decide
whether or not a given graph is a visibility graph of some polygon (with or
without holes) [3, 4]. Application of visibility graph approach to solve
"constrained path" problem was first proposed by Wangdahl et al. [5], who used
a variation of Dijkstra's algorithm to solve pipe routing in ships. This approach
was adopted later by Lozano-Perez arid Wesley [6] to navigate a robot vehicle.
Lozano-Perez and Wesley also showed that shortest path for a moving polygon

amidst convex polygonal obstacles can be solved in 0(n2) time using Dijkstra's
algorithm applied to certain visibility graphs.

Even though the shortest path could be obtained in 0(n2) time, for many
years the fastest algorithm known for constructing the visibility graphs had a
bound of O(n2log n). In 1985, Wezl [7] exploited the special properties of
arrangement of lines (dual of a set of given points) to reduce the complexity to
O(n2).

A special case of "constrained path" problem related to rectilinear
obstacles gained researchers attention due to its application in VLSI (Very
Large Scale Integrated-Circuit) design. Lee and Preparata [8] proposed an
0(n log n) algorithm to solve the constrained path problem among rectilinear
barriers without explicit construction of the entire visibility graph. Their
algorithm exploited the dual properties of triangulated simple polygons [8].

Another interesting case of "constrained path" problem is related to
shortest path in L1-metric among rectilinear obstacles. Larson and Li [9]
proposed an algorithm that included: (1) construction of visibility graph in L1-
metric and (2) generating shortest path using a modified Dijkstra's algorithm.
Wu et al. [10] proposed a different algorithm for the same problem using a grid-
like structure called a tack graph. In this paper, we are proposing a modified
Larson and Li [9] algorithm to generate a local collision avoidance path plan for
concrete placement. This approach is specifically chosen because it alleviates
the problems associated with: (1) consolidation and screeding crew and (2) path
planning of other robots related to concrete construction.

2. GEOMETRIC PRELIMINARIES

Let n be the number of nodes in. the Rectangle Adjacency Graph (RAG),

x = (xs, ys) be the source point, and T = [ (xt, yt) E 912 I ]<t<_4 } be the set of target
points. The source point S corresponds to the current position of the placement
pipe after completion of concreting rectangular partition represented by the
node Ri of RAG. Target points correspond to vertices of rectangular partition
represented by the node Ri+1 of RAG.

Let 0 = { Oi I 1<_i<_m } be the set of obstacles of orthogonal polygonal
shape and ( (x, yu)i, (xv, yv)i) be a line segment of obstacle i. Further,
Q = { RR 11<_j_n } be the set of rectangular partition corresponding to nodes of
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RAG and 0 be the set of obstacles that are grown to accommodate the size of the
placement pipe.

We define Q = { Rj I 1<_j<_n } as the set of pseudo-obstacles that results
from shrinking all rectangular partitions of a given floor. Shrinking process can
be performed by adopting an approach similar to growing of obstacles proposed
by Lozano-Perez and Wesley [6]. Shrinking parameter doubles whenever
boundary of a rectangular partition overlaps with the boundary of an obstacle.
As the partitioning of the floor corresponds to non-overlapping rectangles that

excludes obstacles [2], intersection of sets S, T, Q, and 0 is a null set.

A rectilinear path P in 912 having 2(z+1) steps is specified by a sequence

of points in 912 given by { (xo, Yo), (xi, Yo). (x1, Yt), (x2, Yt), (x2, Y2).......(x', Y') ......
(xz+i, YZ+i) } such that the path P is given by Equation (1).

P = {{ (x, Yw) E 912 I xw<_x<xw+1 v xw+l<-x<-xw for 0<_w<_z}

u { (xw, Y) E 912 I Yw-1:!^y yw v Yw:!^Y:!^Yw- 1 for 0<_w<_z}}......... (1)

Further, rectilinear length of a path P is given by Equation (2):

Z

LP= I (Ixw+1-xw I + I yw+l - Yw I) ...........................(2)
w=0

Let P1j denote a feasible rectilinear path between any two points i E S,

j E T. Clearly, there exists at least one rectilinear path P 13 for all elements

i,j c= {SuT} such thatPlj u0=0.

Now consider the merged set of points M = { S u T u Q u 0 1. Any two

points m(i), m(j) E M with coordinates (xm(i), ym(i)) and (xm(j), ym(j)) are said to
communicate, if there exists at least one feasible path P13 such that its
rectilinear length is given by (I xw+i - xw I + I yw+l - yw I) [9]. There can be more
than one communicating path between two points as shown in Figure 1 and
hence minimal feasible paths are considered . For example, paths abhc, aeflhc,
aeijkgc, and aeidkgc have the same rectilinear lengths and are minimal.

3. CONSTRUCTION OF VISIBILITY GRAPH

Construction of visibility graph begins first by including all the edges due

to simply communicating vertices belonging to the set { S u T u Q u 0 } using
ray shooting technique . Two vertices m(i) and m(j) are said to be simply
communicating if one of the following three conditions are met : ( 1) m(i) and m(j)

are adjacent vertices in the set { Q u 0 }, (2) m(j) is one of the end points of the
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line segment sk E { Q u 0 } that intersect a ray from m(i) along one of the
principal directions x or y, and (3) rays from m(i) or m(j) intersect at a point

b,z {SuTuQUO}.
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Figure 1. Multiple Minimal Rectilinear Paths
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The next step in the construction of visibility graph requires
identification of all vertices communicating with the source vertex. This step
includes edges due to all paths that are monotone with respect to x and y-axis.
A path P along the points P1, P2. ......Pk is said to be a monotone path with
respect to x and y-axis if ordering of the projections of p1, P2. ......Pk on to the x
and y-axis is same as that of the path itself. Identification of all vertices

m(j) e { S u T u Q u 0) that communicate with the source vertex s can be
performed iteratively by using information related to : ( 1) orientation of node
m(j) with respect to s and (2) permissible direction that provide orientation
about m(j) that includes monotonic paths through m(j) to s. The remaining
edges of the visibility graph correspond to non - monotonic paths and can be
determined by modified Dijkstra ' s algorithm described in the next section [4, 9].

4. MINIMAL RECTILINEAR DISTANCE

In graph-theoretic approach, a. shortest-path problem is formulated as
follows: given a directed graph G = (V, E) and weight function w that maps
edges to real valued weights, the weight of a path w(p) is the sum of the weights
of its constituent edges. Shortest-path weight d(i, j) from node i to node j is
defined as:
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min w(p ) if a path exists from i to j
d(i,j)=

otherwiseCIO

The shortest path from node i to node j is then defined as any path p with a
weight w(p) = d(i, j).

The technique used by a shortest path algorithm is called relaxation.
Relaxation is a process that repeatedly decreases an upper bound on the actual
shortest-path weight of each vertex until the upper bound equals the shortest
path weight [11].

The weight function considered by minimal distance rectilinear path
algorithm corresponds to the penalty travel distance that occurs due to non-
monotonic paths between any two vertices . The penalty travel distance is
mainly due to doubling back in the projections to principal axes as the path is
traversed [4]. At any stage of this algorithm, two sets of vertices belonging to
visibility graphs exist . Vertices whose minimal distance paths have already
been determined are grouped under a "closed" set and will not be examined
further. The vertices belonging to complement of this closed set are grouped
under a open set . At the beginning of the minimal distance rectilinear path
algorithm all vertices connected to the source vertex by a monotonic path are
assumed to have attained the minimal paths and are included in the closed set
as the penalty travel distance between them is zero.

At each relaxation step, all the vertices in the open set that simply
communicate with at least one vertex in the closed set are examined and their
minimum penalty distances to the source vertex obtained. Following this, the
least penalty path that corresponds to a minimal penalty among all paths that
simply communicate between a node in the open set and a node in the closed set
is added to the closed set.

The construction of visibility graph in the previous section, enabled the
algorithm to avoid obstacles such as elevator shafts. However , projecting
column bars must also be avoided by the placement pipe path . The relational
structure RAG proposed in Kunigahalli et al. [2 ], contains sufficient information
to avoid projection of column bars as described in the subsequent section.

5. AVOIDING COLUMN BARS

Every segment along the minimal rectilinear path P ;j between the source
vertex s and the target vertex t is either a subset or a superset of

4

{ U (uk, vk) E Ri I Ri E Q for 1<_i <_n }. Each element R; in the set Q corresponds
k = I

to a node in the RAG. Formation of a node in RAG includes 2-dimensional
range search within the range [width x span] of beams enclosing the
rectangular partition represented by the node. The 2 -D range search can be
performed using either a range-tree or a k-d tree. The 2-D range search
identifies all columns intersecting with beams enclosing a rectangular partition.
Geometric information related to all intersecting columns are stored along each
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edge of the partitioning rectangle that is represented as a single node in RAG
[12]. During traversal of path P;j, a local replacement of sub-paths along P;j
occurs at all intersections of P13 with columns of the floor.

6. CONCLUSION

An algorithm to construct visibility graphs for collision avoidance path
planning in concrete construction has been described. The algorithm employs
ray shooting technique and utilizes information related to orientation of each
node with respect to source node in order to generate edges of the visibility
graph. The rectilinear path-planning approach adopted by this algorithm
alleviates problem associated with coordination of construction crew and other
robots operating on job-site.
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