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Abstract

The problem of the realization of a double hit hammer for inserting piles in the 
ground as needed in construction has been addressed. It is mainly shown that in 
parameter  space  of  the  mechanical  system,  there  exists  an  operating  window 
where the single cycle behavior corresponding to one stroke of the power system 
can be repeated in a stable periodic behavior with period equal to the single cycle 
one. As the applied control is a simple one, it would be of interest to consider 
technical experiments to check the usefulness of the concept. 

I - Introduction

Construction  and  technical  modern  realizations  are 
requiring to pile always larger elements in the ground, 
and to deal with more difficult problems related to size 
and  weight  of  manipulated  objects  to  pile. 
Development  of  a  gripper  system  has  allowed  the 
hammering force to be acting very close to the ground 
and  to  reduce  pile  deformations  and  vibrations. 
Efficiency  is  increased  by  this  method,  but  the 
fundamental question of improving the overall system 
itself remains open, as classically the penetration depth 
is  relatively  modest  for  the  power  injected  and  the 
hammer  mass  involved.  Improvement  from  using 
vibratory drivers[l] is limited, as, though limiting noise 
level, the power input at each stroke is reduced so that 
it rapidly stays below a threshold value increasing with 
the size of the piled object. In a different way, it has 
been  suggested[2]  to  split  hammer  mass  into  two 
mechanically interrelated masses, so that at each stroke 
the hit on hammer is itself splitted into two hits acting 
on  each  mass.  It  is  then  interesting  to  determine 
whether a carefully designed mechanical link between 
the two masses could produce a significant change in 
hammering efficiency with this type of structure, and 
to  verify  later  whether  such  system  is  technically 
workable within the limits of today technology. This in 
particular  implies  to  make  sure  that  the  cycle  is 
repeatable a large enough number of times so that the 
double hit hammering can be processed for a complete 
piling run.  The repeatability  rests  upon the  fact  that 

during the second part  of  the elementary cycle  after 
their collision, the two masses are effectively moving 
together up to the final stopping time, and that the next 
stroke  on exterior  mass  is  itself  coming at  the  right 
time  so  that  during  the  next  following  cycle,  the 
collision time is not shifted away from the optimum 
single  cycle  value.  Mathematically,  these  conditions 
are expressing the periodicity of the complete run over 
a  cycle.  From  their  analytical  representation,  the 
restriction  of  existence  domain  of  the  three  system 
parameters  can  be  discussed  to  define  the  workable 
window.      

II - System Equations

Instead of a classical  one piece hammer of mass  M, 
consider  a  two-component  one  with  exterior  hollow 
component of mass M1 moved by hydraulic servo, and 
an interior one of mass  M2 moving with low friction 
inside the cavity of first component and mechanically 
linked to it. Then one should determine the command 
which enhances at most the efficiency of such system, 
being understood that there are two aspects in first, the 
static piling effect, and in second, the realization of the 
dynamical  sequence  allowing  to  repeat  for  many 
cycles  the  elementary  double  hammering  stroke.  A 
passive case will be considered here where the link is 
be represented  by a spring of  stiffness  K,  see  Fig.1. 
From system definition, dynamical equations for each 
component are of generic form 
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with  x1,  x2 the  positions  of  each  component,  R the 
resistance to penetration of the ground, and  Fl, F2 the 
forces  mainly  due  to  friction  affecting  components 
dynamics coming from their interaction and from piled 
object-soil interaction[3].
Owing  to  the  small  velocities  during  motion,  these 
forces will be linearized in their arguments in (1) as
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where  hammer  hit  is  assimilable  to  a  percussion  at 
time t = 0 with resulting momentum P, of which a part 
βP is  directly  communicated  through all  mechanical 
links  to  the  second  internal  component.  The  system 
(1,3)  can  be  nondimensionalized  with  characteristic 
pene-tration time  θ =  p/r and penetration depth  π = 
p2/r where p=P/M1 and r=R/M1 as
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with initital conditions η1(0) = 0,  η´1(0) = 1,  η2(0) = 
0, η´2(0) = β, and defining t = θτ, xj = πηj, k = K/M1,  
µ = M2 /M1, fj = θφ j, kθ 2 = κ. After mass collision at 
convenient time τC, the two masses will be supposed to 
stay  together  (η1  =  η2)-  both  conditions  which  will 
impose  restrictions  on  possible  values  of  system 
coefficients as seen later -, and obey the equation
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with initial conditions η(τC) = η1(τC) = η1C ,  η´(τC) = 
η´1C + (1+µ)-1(η´2C -  η´1C). Eqn.(5) should be solved 
up to the time τF for which η´(τF) =0 corresponding to 
trajectory end point for one elementary cycle. 

It should now be verified that this cycle is repeatable, 
which amounts to reconsider the system (4,5) with the 
new periodic initial conditions   
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where  T is the time interval between two strokes, and 
to  determine  the  parameter  domain  for  which  hit 
efficiency is  larger  than with conventional  one mass 
system. 

III - Periodic System Analysis

The success of the two-mass approach thus rests upon 
satisfaction of different conditions concerning both the 
elementary one stroke cycle and the continuation over 
as  many cycles  as  possible.  In  the first  group  is  the 
possibility  for  the  second  mass  component,  starting 
slower than the first one, to take advantage of spring 
force  to  hit  the  cavity  bottom  end  with  a  relative 
velocity as large as possible and before the end of first 
mass component motion, hence the name double hit. 
This problem has been previously analyzed[4] and one 
gets in nondissipative case the analytical expressions
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where for convience γ = 1 - β/µ and ω = (κ/µ)1/2 , out 
of which the normalized final one-cycle time τF and the 
normalized  one-cycle  penetration  depth  ηF  can  be 
calculated  in  terms  of  system  parameters  ω µ and 
initial condition β , and compared to their values  τF0 = 
1 and  ηF0 =  1/(2[1+  µ]) for  the  classical  one-mass 
hammer with same total mass and same initial stroke. 
The two-mass system will be more efficient than the 
one-mass  one  if  final  penetration  depth  per  time  is 
larger after the same time interval, ie if  Q(β,µ,ω)/τF 

>1 with larger value. This condition is easily satisfied 
for large parameter range with typically a value 1.5 for 
the  ratio.  Also  it  should  be  verified  that  collision 
occurs  before  the first  mass  reaches  its  rest  position 
and that after collision the two masses are staying in 
contact during all the second phase of the motion. In 
non  dissipative  case  the  first  condition  writes  τC < 
2(1+µβ) and is to be combined with (8) to eliminate τC 

.  The second condition can be expressed as  η2(τ)  > 
η(τ) for τC ≤  τ  ≤  τF  where η2(τ) is the solution for 
second mass motion during the first period  τ  <  τC 

and  extended  to  the  next  interval.  The  condition 
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reduces  to  η2(τF)  >  η(τF) as  a  consequence  of  the 
dynamical  behavior  of  the  two  masses.  In  the  non 
dissipative case a simple sufficient condition takes the 
form ω(τF - τC) < π  ie

                [ ]( ) πττµ βω <−+ 21 2
CC /                (9)

So when (9) is satisfied with the two conditions

                 τC < 2(1+µβ) ,      
               Max Q(β,µ,ω)/τF   > 1                       (10)

the system returns to equilibrium position at time τF . 
So for  any T  ≥ τF  the system will  have a periodic 
behavior. 
More generally, it is useful to consider the case where 
the two masses  rest  positions are not  coincident  and 
differ by a normalized distance  a. In this situation, at 
time τF the second mass is off its equilibrium position 
and for τ > τF the system is running again according to 
the equations
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and there exists a time T for which η1(T)=η2(T)=0 ie

        122/1

2/1

)1()2cos(

,)2(
−−=

=−Τ

ωωµ

µτ

aa

aF                    (12)

defining a = ηF and T. Note that the velocities at T are 
not 0, so if the system receives a stroke at T, the initial 
velocities  are  now  η´10=1+η´1(T),  η´20=β/µ+η´2(T), 
but the important point is that at collision between the 
two masses  the  supplementary  stroke  due  to  second 
mass is given by ∆´C =η´10 - η´20 only depending on 
initial velocities. So if from eqn(8)  τC is fixed instead 
of   ω  for  convenience  of  optimization,  it  can  be 
verified from eqns(11,12) that after the time interval T 
the system returns to the same state ie there is also a 
periodic solution to the initial system in this case. 

IV – Stability Considerations

Though  there  exists  a  continuous  family of  periodic 
solutions to the piecewise linear system (4,5), not all of 
them  are  acceptable  for  double  hit  optimization 
purpose.  First  one  should  select  the  solution 
corresponding to the shortest period ie to minimize the 
distance between mass rest positions compatible with 
eqns(9,10)  and  technical  constraints  related  to  mass 
decoupling. Another requirement is stability to prevent 
damageable  blow out  of  dynamical  behavior  due  to 
inadequate  timing  of  hammer  strokes.  First  it  can 

easily be verified that the system (4,5) is locally stable 
as the coefficients of the characteristic equations
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are such that the conditions for negative real values of 
their solutions, which reduce to  ακ >0 and to  µ+ [1-
(αµ)1/2]2 >0,  are  all  satisfied.  Two  trajectories  with 
close initial points will remain close, but only within a 
domain of continuity of the equations. 
Starting  now  from  nominal  initial  values 
corresponding to unperturbed periodic trajectory,  one 
will  analyze  how  close  trajectories  starting  in  its 
vicinity will evolve during one period. This amounts to 
use  Poincaré  map[5]  of  initial  ball  and  verify 
conditions for which its transforms after a number of 
periods are 
in  a  bounded  enough  domain.  However  this  BIBO 
condition  may  be  too  loose  and  a  more  restricted 
contraction  condition after  one single  period  will  be 
studied. So considering the nominal sequence
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characterizing the previous periodic trajectory,  let  us 
suppose  that  there  is  a  perturbation  (δηj0 ,δηj0´)  of 
initial  point.  After  the first  time interval  one gets  at 
time τc
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During the second part of the motion where the two 
masses are in contact, the error at collision propagates 
and at τF one gets
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where the errors are calculated at time τF . For the last 
part, where the inner mass returns to its initial value 
located  at  abscissa  a,  the  propagation  of  the  errors 
gives at the end of the period T the shift
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The  displacement  error  is  0  to  first  order. 
Consequently,  the  role  of  the  last  part  of  the 
elementary cycle is to shield inner mass motion against 
small  enough  perturbations,  and  a  small  initial 
displacement  (δη20  ,δη´20)  thus  becomes  (0,aω2δτF). 
For the perturbation to disappear, one should impose a 
contraction property ie that ,δη´20> aω2δτF, which with 
eqns(17,18) simply writes

                           2
1
µ ω

µ+<a                             (19)

This  condition  expresses  the  constraint  that  the 
equilibrium distance between the two masses is upper 
bounded  for  stability  of  the  two  mass  system.  The 
system is thus technically viable with fixed period T if 
this distance is realizable. An order of magnitude for 
the right hand side of eqn(19) is .1in normalized units, 
ie a limit value for a is (.1p2/r). As there is an inferior 
technical  limit  depending  on  the  mass  value  for  the 
equilibrium distance between the masses, there exists a 
minimum  value  of  the  normalized  stroke  p below 
which  such  a  control  cannot  be  used.  This  is 
corresponding to small hammering units. For them it is 
necessary  to  operate  the  system  in  a  different  way. 
Instead  of  having  a  constant  period  T,  one  should 
depart the next stroke each time the masses are at their 
initial equilibrium positions. Technically it is sufficient 
to have an electric  contact at equilibrium position of 
the inner mass which initiates the stroke with included 
delay  effect  to  account  for  transmission-execution 
time.  As  a  consequence  the  period  between  two 
consecutive strokes is no longer a fixed constant but 
varies depending on the shift with respect to nominal 
value. In all cases, there exists a window in parameter 
space  within  which  the  system  exhibits  a  stable 
behavior,  ie  can  be  operated  for  a  large  number  of 
strokes.  Numerical  calculations  of  the  model  are  in 
progress.

V – Conclusion

The problem of operating a piling hammer in double 
hit mode, in which the hammer mass is split into two 
mechanically  related  masses,  one receiving the blow 
and the other one being moved and colliding the first 
one with larger velocity to give an extra impulsion, has 
been  previously  addressed  and  was  showing 
interesting  performance  enhancement  over  a  single 
stroke  operation.  Here  the  repeatability  of  this 

operation  has  been  studied,  and  it  has  been  mainly 
shown that there exists interesting windows in system 
parameter  space  so  that  the  system  exhibits  stable 
behavior.  Part  of  these  windows,  corresponding to  a 
natural  periodic  system  behavior,  is  resulting  from 
adequate  design  of  nominal  mechanical  parameters, 
and  is  in  principle  directly  accessible  in  technical 
terms. Because it may be limited in applications, there 
is another part aside which does not correspond to a 
strictly  periodic  behavior,  as  it  is  resulting from the 
repeatability of the displacement of inner mass and its 
crossing of equilibrium position. In this case, a control 
system to check the crossing with adapted delay in the 
loop is needed. Depending on case study,  both ways 
have  their  interest  to  be  decided  on  experimental 
observations. 
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