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Abstract: Utilizing theory of the secondary quantization, a study of vibration behaviors in flexible-link 
robot arms is possible in microscopic viewpoints.  This  paper  studies  the  relation  of  vibration 
related to phonon coupling interaction by means of Green’s function method beginning with energy 
model.  Results confirm analytically the existence of the relationship between the macroscopic study 
employing a classical beam theory such as the Euler-Bounouli theory and the proposed microscopic 
method.  The approach presented in this paper may be an alternative way to gain some insight into the 
real vibration and damping mechanism of flexible-link robot arms.
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1 INTRODUCTION

Due  to  some  advantages  of  flexible-link  robot 
arms over the conventional ones such as lower energy 
consumption,  less  overall  mass,  and  faster  system 
responses,  various  basic  researches  on  flexible-link 
robot  arms in both science and engineering aspects 
have  been  intensively  carried  out  [1-5,  to  name  a 
few].  However, the flexible nature of the link of the 
arm induces the vibration of the structure.  Attempts 
to  construct  a  model  of  the  arms  including  the 
vibration behaviors have been an issue in this area. 
However, the perfect model has not yet been obtained 
because  the  correct  damping  mechanisms  in  beam 
have not perfectly understood yet [6,7].

Although the Kelvin-Voigt  damping has a  good 
physical meaning, by which the vibration modes lost 
there energy to the resistance of the beam material, 
but  this  types  of  damping  overdamps  the  higher 
modes as reported in [7].  According to [7], the A1/2 

operator damping in [8] seems to be mathematically 
fit the experimental data, but the insight of physical 
meaning  is  not  obviously  illustrated.   Hence  the 
correct  damping  mechanisms  in  beams  are  still 
illusive,  and  are  required  more  studies  and  further 
investigation.   

      

In  recent  years,  the  knowledge  of  quantum 
mechanics has been introduced to control engineering 
[9-10].   Few papers on quantum control  have been 
published.   The  area  of  applying  knowledge  in 
quantum mechanics for problem in control system has 
considered  as  in  its  infancy  stage.   Not  only  the 
framework needs to be clarified in the areas, but also 
the knowledge about using the new thinking tools is 
also required for control engineers to carry out their 
work and apply to problem-solving processes fallen 
into the new paradigm.  

This  paper  attempts  to  pioneer  such  an 
investigation on applying the secondary quantization 
known and used in physics since the World War II to 
introduce an alternative way of thinking for control 
engineering and robotics.     At the same time, the 
equal  important  objective  is  paid  on  the  search  of 
understanding  the  vibration  mechanism  in  the 
flexible-link robot arms, while relating and depicting 
the  microscopic  viewpoints  to  the  macroscopic 
world.   Some  insight  is  expected  to  gain  in  this 
research  along  with  the  demonstration  of  applying 
tools  in  quantum  mechanics  to  robotics  and 
automation.

 To  begin,  the energy model of phonons as the 
vibration quasi-particle acting quantum mechanically 
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and  as  collective  excitations  together  with  their 
interaction on the whole lattices is given in Section 2. 
Section 3 shows mathematical  methods such as the 
propagators,  approximation and diagrams for many-
body  systems  as  relatively  new  tools  in  robotics, 
automation  and  control  engineering.    The  finding 
results  along  with  discussion  and  conclusion  are 
presented in Section 4 and 5 as in fashion.

2. ENERGY MODEL

Phonons  are  known  as  “bosons”  or  particles 
obeyed  Bose-Einstein  statistics  [11].    Having 
considered a flexible-link robot  arm as a beam, we 
now think microscopically that phonons are pumping 
into a flexible-link arm created from the excitation of 
input energy while the manipulator is in an operation 
mode.   In  atomic  scale,  the  proposed  Hamiltonian 
system for phonon mechanism in beam is formulated 
as    
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Here the first two terms represent the unperturbed 
term  or  the  Hamiltonain  for  a  set  of  phonons  as 
oscillators extending through the whole lattice, where 
the second term is the energy at the ground state level 
of  the  phonons.    The  operators +

kk bb , are  the 
annihilation  and  creation  operators  obeyed  boson 
commutation rules:.  
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The third term in equation (1) involves the interaction 
among phonons with the lattices and themselves, and 
V(k) is the parametizing microscopic mechanism of 
interaction acquired a k-dependent frequency.  

Since the perturbation term could be equally large 
as  the  unperturbed  one,  the  formal  perturbation 
technique cannot be used.  Moreover,  upon hitting, 
lattices  could  absorb  the  phonon  energy  effecting 
probability amplitude of the phonons, making V(k) as 
a time dependent function.  To carry out the analysis, 
the  Green’s  function  propagator  method  will  be 
employed in the next section.  

3. GREEN’S FUNCTION AS PHONON
PROPAGATOR

The propagator method treated by using Green’s 
functions and diagrammatic techniques as shown in 
Section 4 have successful applied to extract “know-
why” in many macroscopically physical phenomena 
such  as  low  temperature  superconductivity,  phase 
transition  of  matter,  ferromagnetic  behaviors,  and 
other  problems  in  nuclear  physics  and  quantum 
electronics.   In  the  Green’s  function  propagator 
method  the  poles  of  the  propagator  provides  the 
energies  of  the  excited  states.   Using the  standard 
treatment  of  the  Green’s  function  and  taking  the 
Fourier  transforms,  we have  the  propagator  in  the 
forms of
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The ket vector  | 0 > represents the ground state 
for the system of interacting phonons,  where the T 
operator  is  the  time  operator  for  bosons  having 
property:  
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The  physical  meaning  of  the  Green’s  function 
propagator in (4) can be directly read off as the the 
probability amplitude that a phonon in the state k is 
pumped into the interacting ground state at time t=0 
and propagates in the system, which the phonon in 
state k at time t = t and t>0 can be observed.  For the 
non-interacting case for which a phonon propagates 
freely, we assume G (k,t) in the form of

 ti
t eiAtkG 0),(0

ω−−=       (6), 

and  the  backward  in  time  propagator  for  the  free 
propagation of a phonon can be obtained by changing 
the +t in equation (6) to –t.

Taking the Fourier’s transform of (6) as defined 
in (3), and  using the residue theorem, we have
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Here  δ represents the positive infinitesimal used 
to remove the oscillating terms at time t approaching 
to  infinity,  which  may  be  related  to  the  damping 
feature.
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Similarly,  for  the backward phonon propagation 
in time as aforementioned, we have
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4. ANALYTICAL RESULTS AND 
DISCUSSION

 Using the Heisenberg picture and the Hamiltonian 
given  in  equation  (1)and  then  taking  the  Fourier 
transform defined in (3), the equation of motion for 
each Green’s function propagator can be obtained as 
shown by the Dyson’s equation:
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where Σ is the self-energy defined as
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Equation  (8)  can  be  found  by  summing  all 
possibility  sequences  of  interaction  between  each 
phonon and lattices  or  among phonon hitting other 
phonons.  With the aid of Feynman diagrams, Figure 
1 can be obtained.

G(k,t) =

     =               + +
                                     

  +                   +                 

       +   

   +

  +     …
  

Figure 1. Expansion of phonon propagators. 

The symbol         represents an interaction at time 
t. Assume also that each interaction with the lattice 
the phonon lost  its  energy to the lattice resulting a 
vibration  effect.   The  summing  of  all  phonons 
propagators  via  statistical  average  would effect  the 
lattice to vibrate upon hitting.  The more hitting rate 
of phonons to the whole lattice, the higher the lattice 

vibration and the more energy lost from the phonons. 
This  physical  phenomena  associates  damping 
mechanism would  guarantee  the  convergent  of  the 
series in Figure 1.    

Translating  Figure  1  into  an  equation,  we then 
get:
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We  sum  up  the  series  in  (11)  by  using  the 
geometric  series  to  get  equation  (9).  Alternatively, 
the series  can  be  summed graphically as  shown in 
Figure 2.

                   =                 +                     Σ

Figure 2. Dyson’s equation as shown in equation (9).

With the damping mechanism, thus the G(k,  ω) 
form  holds  only  for  ω satisfying  the  convergence 
condition that
 

1),(0 <ΣwkG   (12).

From (10) with the aid of the geometric series, we 
have
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We now reach the condition for ω range in which 
the phonon propagators to be valid as shown by the 
inequalities  (11)  and  (14).   Again  with  damping 
mechanism associated with phonon-lattice interaction 
of both forward and backward propagators, prove for 
convergence of equations (11) and (14) to hold can 
be omitted and further assumptions are not required.

It  is  easy  to  see  that  we can  get  renormalized 
phonon  frequencies  from  the  poles  of  G(k,ω)  by 
using equations (9) and (10) by direct substitution .  
For example, if the interaction term is assumed to be 
in the form of 
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,  which is  the  form obtained  from considering  the 
atoms of the flexible material vibrated harmonically 

with  coupling  constant  2
02

1 ωm and  interatomic 

distance a, we can obtain    
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In equation (16), we drop the damping associated 
term δ out for the sake of convenience.  We then have 
the renormalized phonon frequencies from the poles 
of G:

2
1

0 ))cos(1( ka−= ωω                           (17)

As we can see,  equation (7)  is  nothing but  the 
phonon dispersion law.  This implies that the phonon 
mechanism rules out  the vibration,  microscopically. 
The  vibration  modes  also  involve  with  this 
mechanism and the series truncation using only the 
dominant  modes  in  consideration  can  be  done  by 
employing  the  inequalities  (12)  and  (14).   The 
question  of  how  many  modes  exist  or  should  be 
included in modeling and control of the flexible robot 
arms can  be  now partly answered,  analytically and 
intuitively.  

Referring  to  [3],  Figure  3  is  plotted  based  on 
Timoshenko beam theory.   The  curves  imply some 
insight  into  the  effects  of  microscopic  world  by 
phonon  mechanism  resulting  macroscopically  via 
statistical  average  of  the  collective  excitation 
phenomena. Some evidence relating to the damping 
effects and vibration modes due to the decreasing of 
the  probability amplitudes  of  phonons upon hitting 
lattice  and  other  interaction  together  with  the 
macroscopic  effects  corresponding  to  phonon 
frequencies are shown.  

Concerning a  question  of  the  control  spill  over 
effects  in  which  the  inappropriate  control  signal 
excites  the neglected  higher  order  vibration modes, 
there  is  no  difficulty  to  answer  this  question 
intuitively in the light of inequalities (12) and (14). 
Let  us recall the meaning of the ‘self-energy.’ This 
term  here  can  be  interpreted  as  the  case  that  the 
ordinary  phonon  interacts  with  many-body  system. 
Consequently,  the  interaction  creates  the  collective 
excitation effects viewed as ‘the cloud’ and the cloud 
in  turn  reacts  back  on  the  phonon.   The  phonon 

motion is  then disturbed.   Hence,  the other  way of 
looking  at  this  phenomenon  is  that  the  phonon 
changes its own energy by interacting with itself via 
the system.  

In normal case, the amplitudes of the higher order 
vibration modes are less than the lower order ones, 
which  holds  microscopically  for  probability 
amplitudes  of  the  phonons.   The  control  signal  is 
generated in order to suppress all vibration modes.  If 
this cannot be completely done, at least, the dominant 
lower  order  modes  should  be  inherently preserved. 
In contrast to the good control law, the inappropriate 
control signal pumps more phonons into the system. 
The  pumping  phonons  then  exchange  energy  with 
lattice  and  among themselves.   With the  collective 
excitation effect, either low frequency phonons or the 
environment around themselves  could  transfer  their 
energy  back  to  the  high  frequency  phonons.   The 
control  spill  over  effect  is  now  described 
microscopically.   It  is  possible  to  show  the 
explanation mathematically and should be a topic to 
be covered for the future work. 
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Figure 3. The first five vibration modes of a pined-
pined model flexible-link robot arm [3].

5. CONCLUSION

In  summary,  we  have  used  a  theory  of  the 
secondary  quantization  in  quantum  mechanics  to 
study vibration behaviors of flexible-link robot arms. 
The relation of vibration related to phonon coupling 
interaction is studied by means of Green’s function 
method beginning with energy model. 

The  major  result  is  analytically  confirmed  the 
high  possibility  to  study  the  topic  in  microscopic 
viewpoints by employing the methods shown in this 
paper.   Intuitively,  the existence of the relationship 
among the macroscopic  studies employing classical 
theories  and the proposed  microscopic ones  should 
be  agree  in  sense  of  looking  at  the  macroscopic 
effects  as  a  statistical  average  of  the  collectively 
microscopic behaviors.  
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Based upon the best of the literature review of the 
author, this work is perhaps the first attempt to study 
the  vibration  of  flexible-link  robot  arms  in 
microscopic  point  of  views  using  quantum  field 
theory.  The approach may be an alternative way to 
gain some insight into the real vibration mechanism 
and  to  reveal  the  correct  damping  mechanism of 
flexible-link robot arms, which would benefit for the 
future work and further investigation.
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