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Abstract: Bridge management systems (BMS) comprise various techniques need to help make 
decisions on the type of works that need to be performed to maintain the serviceability of a 
bridge  and  to  extend  its  useful  life.  These  decisions  rely  on  current  and  future  bridge 
conditions  therefore  it  is  essential  for  a  BMS  to  accurately  predict  the  future  bridge 
performance,  or  in  other  words  to  assess  the  extent  of  bridge  deterioration.  Numerous 
deterioration models are reported in the literature.  Most of these methods were developed 
using probabilistic approaches ranging from Markovian methods to regression techniques with 
various levels of detail. While offering mostly marginal improvements, such methods increase 
the complexity of the procedures and level of expertise needed. Besides, high reliance of these 
methods  on  historical  data,  which  are  likely to  contain  missing  information,  reduces  the 
chances for a reliable model. The ability of learning in Artificial Intelligence (AI) methods 
provides promising results in modeling and forecasting even in the existence of non-linear 
complex relationships. Furthermore, easier use of AI tools provided by today’s software makes 
AI methods even more attractive. In this study two AI tools, artificial neural networks (ANN) 
and genetic  algorithms (GA),  are  utilized  to  develop  models  to  predict  bridge  sufficiency 
ratings  using  current  geometrical,  age,  traffic,  and  structural  attributes  as  explanatory 
variables. Data is acquired from California Department of Transportation through the Internet 
and it  includes 19120 structural  bridge components owned and maintained by the State of 
California. The models developed by both ANN and GA provided promising and interpretable 
results.  ANN models performed better  when different  models are  constructed for  different 
levels of sufficiency ratings. GA models outperformed ANN models while achieving a better 
goodness  of  fit  even when using the whole data.  However,  remarkably prolonged  training 
times for GA models might be considered as the only disadvantage for this type of application.
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1. INTRODUCTION

According  to  the  National  Bridge  Inventory 
(NBI),  there  are  approximately 589,815  bridges  in 
the  US.   Of  these  bridges,  104,612  (23.8%)  are 
categorized  as  substandard  [1].  About  78,000  have 
inadequate (poor or worse) condition ratings, 53,300 
have  inadequate  structural  appraisal  ratings,  and 
3,100  have  inadequate  waterway  ratings.  Further 
categorization reveals that,  of the 78,000  structures 
with poor  or  worse  condition  ratings,  36,000  have 
poor  deck  conditions,  40,000  have  poor 
superstructure  conditions,  and  50,000  have  poor 
substructure conditions [2].

The  implementation  of  bridge  management 
systems  (BMSs)  is  required  by  the  Intermodal 
Transportation Efficiency Act (ISTEA) of 1991 and 
its  predecessor  Transportation  Equity  Act  for  21st 

Century (TEA-21) of 1998. The bridge management 
system assists in determining the optimal time for an 

agency to execute improvement actions on a bridge, 
given the funds available. A BMS comprises various 
techniques need to help make decisions on the type of 
works  that  must  be  performed  to  maintain  the 
serviceability of a bridge before lapsing into a unsafe 
state. The Federal Highway Administration (FHWA) 
defines  a  BMS  as  “an  integrated  set  of  formal 
procedures for  directing or  controlling all  activities 
related to bridges” [3]. A BMS includes four basic 
components:  data  storage,  cost  and  deterioration 
models,  optimization  models  for  analyzing,  and 
updating mechanisms. The database  connected to a 
BMS stores data from periodic field inspections. The 
bridge is divided into individual elements or sections 
of  the  bridge  which  are  comprised  of  the  same 
material  and  can  be  expected  to  deteriorate  in  the 
same  manner.  The  condition  of  each  element  is 
reported  according  a  condition  state,  which  is  a 
quantitative measure of deterioration on a scale from 
1 to 5, or 1 to 10. Information stored in the database 
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is  used  as  input  into  deterioration  models. 
Deterioration models predict the condition of bridge 
elements at any given point in future. These can be 
deterministic or probabilistic in nature. Deterministic 
models assume that deterioration will take place at a 
known  rate;  however,  probabilistic  models  treat 
deterioration rate as random variable and estimate the 
probability that a bridge will be at a certain condition 
in the future.  Most  probabilistic  models  implement 
Markov process, in which the future condition of a 
bridge can be estimated when the initial  or  present 
conditions  are  known  [4].  Costs  and  expected 
benefits,  in  terms  of  user  cost  savings  and 
serviceability  improvements,  are  estimated  and  fed 
into optimization models for identifying the least-cost 
maintenance,  repair,  or,  rehabilitation  alternatives 
using  a  life-cycle  cost  analysis  or  a  comparable 
procedure.  A  BMS  also  performs  a  multi-year 
network analysis which allows an agency to estimate 
the impacts of implementing or deferring repairs in 
the  future  considering  all  the  bridges  under  its 
jurisdiction.

2. PERFORMANCE PREDICTION

Many bridge rating methods have been developed 
to aid in priority setting. Most such methods develop 
a  composite  index  or  indices  for  each  project. 
Bridges or projects are then ranked according to the 
values of these indices, which determines the priority 
of each project [5].  The FHWA sufficiency rating is 
computed using the structural-condition rating from 
the  inspection  reports  of  bridge  components  and 
other related information [6]. The sufficiency rating 
procedure is a method of evaluating highway bridge 
condition data by calculating four separate factors  − 
structural  adequacy  and  safety,  serviceability  and 
functional  obsolescence,  essentiality for  public  use, 
and special  reductions  − to obtain a  numeric value 
which is indicative of bridge sufficiency to remain in 
the service.  The result of this method is a percentage 
in  which  100  percent  would  represent  an  entirely 
sufficient  bridge  and  zero  percent  would  indicate 
completely insufficient or a deficient bridge [7].

The  prediction  of  the  impact  of  different 
strategies  on  the  system objectives  is  an  important 
purpose  of  bridge  data  analysis.  The  decision 
making, either at the network level or at the project 
level,  is  based  on  current  and  future  bridge 
conditions.  Therefore,  it  is  essential  for  a  bridge 
management  system  to  be  capable  of  accurately 
predicting  future  bridge  conditions.  This  involves 
predicting the future conditions of bridge elements, 
agency costs of different projects and activities, and 
user  and  non-user  consequences  in  terms  of  user 
costs, user time, accident rates and other impacts [5]. 
In  order  to predict  the future condition of a bridge 
element,  one  should  know  how  this  structure 
deteriorates in time. Numerous deterioration models 
are reported in the literature. Most of these methods 
were  developed  using  probabilistic  approaches 

ranging  from  Markovian  methods  to  regression 
techniques  with  various  levels  of  detail.  However, 
estimation  of  transition  probabilities,  necessary  in 
Markovian  approaches,  depends  on  subjective 
engineering  judgement  and  requires  constant 
updating.  Madanat et al.  [8] introduced an ordered 
probit  model  for  estimating  transition  probabilities 
for condition ratings. While offering mostly marginal 
improvements, such methods increase the complexity 
of  the  procedures  and  level  of  expertise  needed. 
Besides, high reliance of these methods on historical 
data, which are likely to contain missing information, 
reduces the chances for a reliable model. The ability 
of  learning  in  artificial  intelligence  (AI)  methods 
provides  promising  results  in  modeling  and 
forecasting  even  in  the  existence  of  non-linear 
complex relationships [9],[10]. 

In  this  study  two  AI  tools,  artificial  neural 
networks  and  genetic  algorithms,  are  utilized  to 
develop models to predict bridge sufficiency ratings 
using current geometrical, age, traffic, and structural 
attributes  as  explanatory  variables  without 
considering a deterioration model.

3. DATA

The data used in this study was acquired from the 
California  Department  of  Transportation’s  web-site 
(http://www.dot.ca.gov/hq/structur/strmaint).  This 
site provides data for the conditions of bridges that 
are owned both by state and local governments. This 
study investigated state owned bridges. The data was 
compiled  in  1999;  therefore,  it  is  assumed  that  the 
condition 

of  the  bridges  are  of  the  year  1999.  There  are 
19120 cases in the data although the California State 
Highway  System  contains  12126  bridges,  third 
highest in the US. The data contains more than one 
entry for some bridges since these contain more than 
one major structural element rated by the officials. Of 
these 12126 bridges,  1756 (14%) were reported  as 
substandard  by  Better  Roads  1999  which  is 
approximately  10%  below  the  national  average. 
Figure  1  and  Figure  2  illustrate  the  age  and 

sufficiency  rating  distribution  of  the  structural 
elements used in the study. 

Figure 1. Distribution of Age of California Bridges
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Figure 2. Distribution of Sufficiency Ratings of 
California Bridges

The mean of the bridge age was 31.6 years and mean 
sufficiency rating was found as 86.5 reflecting fairly 
well condition of the overall bridge inventory.

Although  California  Department  of 
Transportation  has  already developed  a  Markovian 
deterioration model, this study intends to demonstrate 
the power of AI methods and their applicability for 
BMS.

4. ARTIFICIAL NEURAL NETWORKS

An  ANN  is  defined  as  a  type  of  information 
processing system whose architecture is inspired by 
the structure of biological [11]. The ANN emulates 
the network of neurons in human brain and therefore 
its  capability  of  processing  complex,  non-linear 
relationships.  The  artificial  neuron  is  an 
approximately  simulated  model  of  a  biological 
neuron.  A  typical  neuron  receives  input  either  by 
excitation  or  inhibition  from  many  other  neurons. 
When its excitation reaches a certain level it reacts or 
fires. The firing is propagated through a link to other 
neurons  where  it  in  turn  acts  as  input  to  those 
neurons.  The firing can be thought as its output in 
which case the neuron becomes a binary device:  it 
either fires or not. For some purposes it is useful to 
think  the  neurons  output  as  a  continuous  quantity 
such as: its level of activation, its net excitation, or its 
firing frequency. Regardless of its nature of output it 
is possible to describe the relationship between input 
and  output  mathematically.  This  function  and 
treatment of  the weights,  addition or  multiplication 
etc.,  is  one  of  the  major  components  of  a  neural 
network that controls its behavior. Although a neuron 
computes the same function, within the limits of its 
accuracy,  variations  in  the  strengths  of  the 
connections  among  neurons  enable  a  network  to 
learn.  The  learning  may increase  or  decrease  over 
time  in  a  way that  depends  on  experience  of  the 
connection  between  two  neurons.  These  artificial 
neurons are used to develop an artificial neural net 
with many interconnections among different neurons. 
The  connectivity  of  neurons  in  a  net  is  a  second 
component  that  determines  the  network  behavior. 
The  most  commonly  used  structure  has  three 
distinctive layers: 

Figure 3. Multi-layer and Back-Propagation ANN

an input, a processing or hidden, and an output layer 
as illustrated  in  Figure 3. The third component is 
the treatment of error to produce targeted output in 
the  network.  The  most  widely  applied  learning 
scheme  is  the  supervised  learning.  Learning  is 
expected to be achieved when the patterns of changes 
in  the  weights  reach  some  stability.  Each  node 
accommodates a function triggered by the input in the 
input layer, and by the weights in other layers at each 
of  links  that  connect  the  node  to  the  others.  The 
resultant  output  is  compared  to  targeted  solution 
providing a measure of total error.  The weights are 
then  adjusted  such  that  the  previously  introduced 
output  can  be  produced  at  the  output  layer  with 
highest accuracy possible [12]. Therefore the error is 
back  propagated  to  the  network.  Processing  some 
number of  different  input  patterns,  it  is  anticipated 
that  the  network  is  able  to  generalize  what  it  has 
practiced,  in  other  words  the  network  has  been 
trained. However, there is no guarantee or a measure 
that  indicates  the  level  of  learning  attained  by the 
network,  sufficiency  of  number  of  different  input-
output  patterns  or  cases  in  the  training  set  is 
subjective.  Such  a  network  has  been  found  to  be 
capable  of  carrying  out  parallel  computations  for 
different  tasks  such  as  pattern  recognition,  linear 
optimization, speech recognition, and prediction [13].

Back-propagation  networks  are  known for  their 
ability  to  solve  a  wide  variety  of  prediction  and 
classification  problems;  and  it  is  used  in  different 
areas  from predicting  the  outcome  of  construction 
litigation [14] to predicting changes in construction 
cost  indexes  [15].  Back-propagation  networks  are 
preferred  to  predict  the  bridge  rating items in  this 
study for its simplicity and proven success.  

5. GENETIC ALGORITHMS

The  Genetic  Algorithm  is  a  search  and 
optimization  technique  based  on the  mechanism of 
natural  evolution  [16],  [17].  Evolutionary 
computation  is  the  name  given  to  a  collection  of 
algorithms  based  on  the  evolution  of  a  population 
toward  a  solution  of  a  certain  problem.  These 
algorithms  can  be  used  successfully  in  many 
applications  requiring the  optimization  of  a  certain 
multi-dimensional  function.  The  population  of 
possible  solutions  evolves  from  one  generation  to 
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next, ultimately arriving at a satisfactory solution to 
the  problem.  These  algorithms differ  in  the  way a 
new population  is  generated  from the  present  one, 
and in the way the members are represented within 
the algorithm  [18]. 

The first step to employ a GA is to encode any 
possible solution to the optimization problem as a set 
of  strings  (chromosome).  Each  chromosome 
represents one solution to the problem, and a set of 
chromosomes is referred to as a population. The next 
step is to derive an initial population. A random set 
of  chromosomes  is  often  used  as  the  initial 
population. Some specified chromosomes can also be 
included. The initial population is the first generation 
from which the evolution starts. The third step is to 
evaluate  the  quality  of  each  chromosome.  Each 
chromosome is associated with a fitness value.  The 
objective of the GA search is to find a chromosome 
that  has  the  optimal  fitness  value.  The  selection 
process  is  the  next  step.  In  this  step,  each 
chromosome is eliminated or duplicated (one or more 
times) based on its relative quality.  The population 
size is typically kept constant. Selection is followed 
by the crossover step. With some probability, some 
pairs of chromosomes are selected from the current 
population  and  some  of  their  corresponding 
components  are  exchanged  to  form  two  valid 
chromosomes, which may or may not already be in 
the current population. After crossover, each string in 
the  population  may  be  mutated  with  some 
probability.  The  mutation  process  transforms  a 
chromosome into another valid one that may or may 
not  already be  in  the  current  population.  The  new 
populations  are  then  evaluated.  If  the  stopping 
criteria have not been met, the new population goes 
through  another  cycle  (iteration)  of  selection, 
crossover,  mutation,  and  evaluation.  These  cycles 
continue until one of the stopping criteria is met [19].

There  are  several  applications  of  the  genetic 
algorithms  in  civil  engineering  problems.  For 
example  Al-Tabtabai  and  Alex  [20]  proposed  a 
genetic  algorithm  model  to  solve  optimization 
problems in  the  construction,  Hegazy [21]  used  in 
resource  allocation  and  leveling,  Feng  et  al.  [22] 
developed  a system to solve construction time-cost 
trade-off problems, Navon and McRea [23] used to 
select optimal construction robot and Yang and Soh 
[24] applied GAs in structural optimization.

6. TRAINING AND TESTING 
NETWORKS

The NeuroShell® Predictor is a software program 
designed to simplify the creation of a neural network 
and  genetic  algorithm  applications  to  solve  the 
forecasting  and  pattern  recognition  problems.  It 
builds  back-propagation  neural  networks  with  one 
hidden  layer  and  tests  networks  with  different 
numbers  of  nodes  in  the  layers,  allowing  user  to 
identify   the   best   performing   configuration.   For 

Table 1. Variable Descriptions

Feature Name (1) Description (2)

(1) Kind of 
Highway 

1 = Interstate 
2 = U.S. Numbered Highway 
3 = State Highway 
4 = County Highway 
5 = City Street 
6 = Federal Lands Road 
7 = State Lands Road 
8 = Other

(2) Designated LOS

D = Designated Level of Service (NBI Item 5C)
0 = None of the below 
2 = Mainline 
3 = Alternate 
4 = Bypass 
6 = Spur 
7 = Ramp, Wye, Connector, etc. 
8 = Service and/or unclassified frontage road 

(3) District
(4) Bypass Length Bypass detour length in kilometers
(5) Lanes On Str. Number of lanes on the structure
(6) Lanes UnderStr. Number of lanes under the structure
(7) AADT Annual Average Daily Traffic

(8) Approach Width Width of the approach roadway, shoulders 
included, in meters. 

(9) Bridge Rail Rate
0 = Does not meet currently accepted standards
1 = Meets currently acceptable standards 
N = Not applicable or not required 

(10) Transition Rate
0 = Does not meet currently accepted standards. 
1 = Meets currently acceptable standards 
N = Not applicable or not required 

(11) Approach 
Guard Rail

0 = Does not meet currently accepted standards. 
1 = Meets currently acceptable standards 
N = Not applicable or not required 

(12) Approach 
Guard Rail End

0 = Does not meet currently accepted standards. 
1 = Meets currently acceptable standards 
N = Not applicable or not required 

(13) Material Type

1 = Concrete 
2 = Concrete continuous 
3 = Steel 
4 = Steel continuous 
5 = Prestressed concrete 
6 = Prestressed concrete continuous 
7 = Wood or timber 
8 = Masonry 
9 = Aluminum, wrought iron, or cast iron 
0 = Other

(14) Design Type

01 = Slab 
02 = Stringer/Multi-beam or Girder 
03 = Girder and Floor beam System 
04 = Tee Beam 
05 = Box Beam or Girders - Multiple 
06 = Box Beam or Girders - Single or Spread 
07 = Frame (except frame culverts) 
08 = Orthotropic 
09 = Truss - Deck 
10 = Truss - Thru 
11 = Arch - Deck 
12 = Arch - Thru 
13 = Suspension 
14 = Stayed Girder 
15 = Movable - Lift 
16 = Movable - Bascule 
17 = Movable - Swing 
18 = Tunnel 
19 = Culvert 
21 = Segmental Box Girder 
22 = Channel Beam 
00 = Other

(15) Roadway 
Width Bridge roadway width curb-to-curb (meters) 
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Table 1. (Cont.d) Variable Descriptions

Feature Name (1) Description (2)

(16) Vertical Clearance

Minimum vertical 
clearance over bridge 
roadway (meters). 99.99 
means no impaired vertical 
clearance. 0.00 means not 
applicable.

(17a) Year Built Year of Construction 
(17b) Age
(18) Inventory Rate
(19) Operational Rate
(20) Deck Rating
(21) Sup-Structural Rating
(22) Sub-Structural Rating
(23) Culvert Rating
(24) Overall Structural Rating
(25) Deck Geometry Rating
(26) Under Clearance Rating
(27) Waterway Rating
(28) Approach Roadway Alignment
Sufficiency Rate

genetic  training  it  uses  a  modified  General 
Regression Neural Net [25]. This program was used 
for   training a network using the data  downloaded. 
The   data   was  organized   in   a   MS  Excel 
spreadsheet  that  was  later  input  into  NeuroShell® 
Predictor. Different variations of the data, the cases, 
and  the  parameters  of  the  program  were 
experimented with in order to attain the network that 
performed best.

The  data  is  randomly divided  into  two groups, 
75% of the data used in the training and remaining 
used in the testing of the networks.  The  networks 
comprised of  28  input  features  and  one output 
feature, Table 1 displays the variable descriptions. 16 
different  cases,  in  4  sets,  were  created  for  neural 

network  application  by  altering  time  variable, 
maximum number of hidden neurons, and data ranges 
based  on  sufficiency  ratings.  In  this  section  the 
performances  of  network  training  for  these  18 
networks are  presented.  It  was hypothesized before 
any computation that age variable must be the most 
important variable that affects deterioration. In order 
to  observe  the  scale  effect  of  age  variable  on  the 
results  all  sets  included  two types  of  network:  one 
with nominal age,  and one with ‘year  built’ as age 
variable.  In  the  first  set  the  effect  of  increasing 
maximum number of hidden neurons from 80 to 150 
is studied. Table 2 presents the training performance 
of  networks  in  this  set.  The  impact  of  increasing 
maximum  number  of  hidden  neurons  was  not 
conclusive,  increasing  number  of  hidden  neurons 
improved  R2 and  decreased  average  error  for  the 
networks with year  built  as  age,  however,  changes 
were  in  opposite  direction  with  networks  with 
nominal  age.  In  both  cases  the  changes  in  the 
magnitude were trivial. For the importance ranking of 
variables, ‘year built’ ranked the first with networks 
when it  is  used.  ‘Sub-structure rate’  ranked second 
for these networks while, ‘sub-structure rate’ ranked 
first  and ‘number of lanes on structure’ ranked the 
second with networks with nominal age. The results 
of the first set imply that overall, sub-structure rating 
is more important. However, time was important for 
Network 1 and 3, but it is suspected that this result 
was  arbitrary.  Since  data  does  not  provide  any 
information on maintenance history, age or year-built 
variables can not be considered as better identifiers 
than actual ratings (which are more likely to reflect 
current levels of deterioration).

 In  the second set  the number of input features 
decreased  from  28  to  23  by  eliminating  highly 
insignificant variables after the first 

Table 2. Effect of Number of Hidden Neurons to the Training Performance

Name Time 
Variable

Training 
Set

No of 
Inputs

No of 
Hidden 
Neurons

Training 
Time 
(min.)

R2 Average 
Error

Most 
Important 
Variable

2nd Most 
Important 
Variable

3rd Most 
Important 
Variable

Network 1 Year 
Built 0-100 28 78 2:59 0.559 5.8 Year Built 

(0.340)
Sub. Str. Rate 

(0.151)
No of Lanes 

on Str. (0.062)

Network 2 Age 0-100 28 80 3:39 0.600 5.6 Sub. Str. 
Rate (0.206)

No of Lanes 
on Str. (0.095)

Overall Str. 
Rate (0.089)

Network 3 Year 
Built 0-100 28 147 11:26 0.607 5.6 Year Built 

(0.291)
Sub. Str. Rate 

(0.099)
Sup. Str. Rate 

(0.081)

Network 4 Age 0-100 28 145 11:57 0.594 5.7 Sub. Str. 
Rate (0.240)

No of Lanes 
on Str. (0.094)

Overall Str. 
Rate (0.085)

Table 3. Effect of Removing Some Variables to the Training Performance with Different Time Variables

Name Time 
Variable

Training 
Set

No of 
Inputs

No of 
Hidden 
Neurons

Training 
Time 
(min.)

R2 Average 
Error

Most 
Important 
Variable

2nd Most 
Important 
Variable

3rd Most 
Important 
Variable

Network 5 Year 
Built 0-100 23 137 15:11 0.593 5.8 Year Built 

(0.295)
Sub. Str. Rate 

(0.197)
No of Lanes 

on Str. (0.075)

Network 6 Age 0-100 23 144 14:01 0.582 5.8 Sup. Str. 
Rate (0.159)

No of Lanes 
on Str. (0.103)

Deck Geo. 
Rate (0.103)

Network 7 Cum. 
Traffic 0-100 23 144 14:48 0.575 5.9 Sup. Str. 

Rate (0.205)
Sub. Str. Rate 

(0.134)
Deck Geo. 

Rate (0.097)

Network 8
Stan. 
Year 
Built

0-100 23 149 16:05 0.610 4.8 Sub. Str. 
Rate (0.098)

No of Lanes 
on Str. (0.090)

Overall Str. 
Rate (0.087)
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set and the effects of representing age with additional 
measures are investigated. The maximum number of 
hidden neurons was kept as 150 since there was no 
significant adverse effect and in order to avoid poor 
results due to such limitation. Cumulative traffic that 
a structure carried over its life is not only a measure 
of time but also an indicator of a total physical load 
exerted on the structure. Network 7 used cumulative 
traffic as age variable. Cumulative traffic values are 
the  product  of  the  Annual  Average  Daily  Traffic 
(AADT) by the structure’s age. In Network 8 ‘year 
built’  variable  was  statistically  standardized,  the 
difference  between  the  mean  and  each  individual 
value  is  divided  by  the  standard  deviation.  The 
results  of  this  set  are  given  in  Table  3  and  they 
confirm  that  ‘year  built’  variable’s  importance  is 
arbitrary.  The structural  ratings ranked as  the most 
important  variables  in  the  networks  other  than 
Network 5, as expected. 

In  the  third  set,  the  training  data  was  grouped 
according  to  different  sufficiency  ratings  after 
realizing that the distribution of sufficiency ratings as 
in Figure 2 is not uniform. The performance of the 
training  can  be  improved  by  working  with  more 
uniformly distributed  output  variable.  The  original 
data  is  divided  into  three  groups.  The  first  group 

included  the  structures  in  very  good  condition, 
sufficiency ratings between 100-90, the second group 
had  structures  in  good  to  fair  condition  with 
sufficiency rating between 89-70, and the third group 
covered  structures  in  fair  to  poor  condition.  The 
results  of  this set  are  illustrated  in Table  4.  These 
results show that  the Network 12 with fair  to poor 
condition  ratings  outperformed  the  other  networks 
significantly  with a  R2 value  of  0.831  and  highest 
rankings in ‘overall structure’, ‘approach guard rail’, 
and ‘sub-structure’ ratings. The inferior performance 
for networks with better structural conditions can be 
explained with the fact that there may not be enough 
variation  in  input  and  output  features  to  capture. 
However, if this is not the case then it may indicate 
that the network training is insufficient under current 
circumstances,  and  it  is  subject  to  a  more  detailed 
investigation.

Finally in the fourth set of training, the training 
performances  of  networks  with  different  output 
ranges  were  tested.  The  amount  of  variation  is 
increased  by  widening  the  range  of  output  for 
Network 12,  while trying not create  biases towards 
structures in good condition. Two new networks are 
then created with sufficiency rating ranges of 0-75, 
and 0-79. Training performances are provided in

Table 4. Training Performance for Structures That Grouped According to Their Sufficiency Ratings

Name Time 
Variable

Training 
Set

No of 
Inputs

No of 
Hidden 
Neurons

Training 
Time 
(min.)

R2 Average 
Error

Most 
Important 
Variable

2nd Most 
Important 
Variable

3rd Most 
Important 
Variable

Network 9 Year 
Built 0-69 28 149 1:54 0.826 3.9

Appr. Guard 
Rail End 
(0.216)

Overall Str. 
Rate (0.122)

Deck Rate 
(0.090)

Network 10 Year 
Built 70-89 28 147 6:41 0.273 3.5 Culvert Rating 

(0.641)
Year Built 

(0.121)
Appr. Guard 
Rail (0.040)

Network 11 Year 
Built 90-100 28 149 7:44 0.303 1.9 Sub. Str. Rate 

(0.123)
Deck Rate 

(0.107)

Roadway 
Width. 
(0.107)

Network 12 Age 0-69 28 150 1:32 0.831 3.8 Overall Str. 
Rate (0.144)

Appr. Guard 
Rail (0.120)

Sub. Str. 
Rate (0.113)

Network 13 Age 70-89 28 148 4:53 0.287 3.5 Culvert Rating 
(0.309)

Sup. Str. 
Rate (0.088)

Appr. Guard 
Rail (0.082)

Network 14 Age 90-100 28 150 5:41 0.324 1.9 Roadway 
Width. (0.149

Approach 
Width 
(0.096)

Sub. Str. 
Rate (0.070)

Table 5.   Training Performance Of Data Sets With Different Sufficiency Rating Ranges

Name Time 
Variable

Training 
Set

No of 
Inputs

No of 
Hidden 
Neurons

Training 
Time 
(min.)

R2 Average 
Error

Most 
Important 
Variable

2nd Most 
Important 
Variable

3rd Most 
Important 
Variable

Network 15 Age 0-79 28 147 2:46 0.710 4.7 Sub. Str. 
Rate (0.165)

Sup. Str. 
Rate (0.134)

Overall Str. 
Rate (0.099)

Network 16 Age 75 28 146 2:02 0.779 4.2 Overall Str. 
Rate (0.257)

Sup. Str. 
Rate (0.110)

Sub. Str. 
Rate (0.097)

Table 6.   Training Performance For Genetic Algorithms

Name Time 
Variable

Training 
Set

No of 
Inputs

Training 
Time R2 Average 

Error

Most 
Important 
Variable

2nd Most 
Important 
Variable

3rd Most 
Important 
Variable

Network 17 Age 0-100 28 43:09:04" 0.69 3.48 District 
(0.062)

Vertical Clear 
(0.062)

App. Rd. All. 
(0.062)

068_WD1.doc- 6 –



Table 5. The results indicate that although variation 
in  the  output  is  increased,  the  performances  were 
affected  adversely.  This  outcome  rejects  the 
conclusion  reached  previously.  Therefore,  the need 
for  more  detailed  study  and  probably  for  a  more 
advanced  ANN  method  or  another  method  is 
inevitable.   

Within this context Network 4 is trained with a 
genetic  algorithm.  The  training  performance  is 
presented in Table 6 and Network 17 shows higher 
R2  of 0.69 vs. 0.6, and 3.48 of an average error vs. 
5.6. The variables in the highest importance rankings 
reflect geographical, geometrical characteristics with 
equal weights and close to those of structural ratings. 
While providing overall better results Network 17’s 
training time was 43 hours on a 333MHz, Pentium 
Workstation.

The trained  networks are  applied  to the second 
group of data reserved for testing.  The results of the 
tests  are  given  in  Table  6.  It  shows  that  overall 
performance  of  testing  is  slightly  lower  than  of 
training for all network types except Network 17, this 
can be result of a better model or can be incidental 
and requires more work. The ranges of data (column 

3) must be taken into consideration when evaluating 
the  percentage  of  cases  with  error  for  a  specified 
range (columns 4-7).

7. CONCLUSIONS

The preliminary findings of an effort to model 
bridge performance with using AI techniques instead 
of  conventional  deterministic  and/or  probabilistic 
techniques are  presented.  The experimentation with 
different configurations of input and output patterns 
yielded  some understanding  of  the  performance  of 
the neural  network models.  However,  the levels  of 
improvements are still at marginal levels. There exist 
numerous parameters and options to be experimented 
with.  Among  there  are:  adding  variables  on 
maintenance history, concentrating on a specific type 
of  structure,  input  transformations,  more  elaborate 
network  architectures  and  learning  schemes.  The 
problem of training time with genetic algorithms is of 
concern, therefore, it may be preferable to work with 
smaller  data  for  GA  applications  and  to  limit  the 
number of experiments with GAs such as comparing 
GA vs. the best ANN model.  

Table 7. Results for Testing Performance

R2 Input-Output 
Range

Percentage of 
Error Between 0-3

Percentage of 
Error Between 3-6

Percentage of 
Error Between 6-9

Percentage of Error
Greater than 10

Network 1 0.564 0-100 34.8 28.9 17.1 19.2
Network 2 0.595 0-100 34.6 28.9 17.9 18.5
Network 3 0.558 0-100 34.2 29.1 17.9 18.8
Network 4 0.578 0-100 33.9 29.4 18.1 18.6
Network 5 0.567 0-100 32.1 29.0 19.1 19.8
Network 6 0.560 0-100 32.2 29.1 18.9 19.8
Network 7 0.563 0-100 31.9 28.9 18.2 20.1
Network 8 0.615 0-100 34.5 29.1 17.8 18.6
Network 9 0.751 0-69 42.1 29.1 16.0 12.8
Network 10 0.170 70-89 47.6 32.1 15.5 4.8
Network 11 0.215 90-100 78.1 20.8 0.8 0.3
Network 12 0.707 0-69 43.0 26.6 13.3 17.2
Network 13 0.175 70-89 48.1 31.7 15.6 4.6
Network 14 0.235 90-100 79.7 19.3 0.6 0.4
Network 15 0.626 0-79 38.6 29.4 16.3 15.7
Network 16 0.683 0-75 42.2 29.5 14.4 13.9

Network 17 GA 0.729 0-100 65.5 14.2 6.72 13.6
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