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Underground coal mining is one of the most dangerous occupations. Years of effort have been dedicated 
to researching methods of characterizing mine roof and floor for improving the mining environment. This 
research investigates using a neural network to classify rock strata based on the physical parameters of a 
roof  bolting  drill.  This  paper  presents  our  methodology,  as  well  as  early  results  based  on  drilling 
experiments conducted in the laboratory using a custom poured concrete test block.  We have classified, 
with a trained network, the five layers of the test block with less than 5% error. 
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1 INTRODUCTION

Underground  coal  mining  is  one  of  the  most 
dangerous  occupations.  The  failure  of  structural 
supports accounts for approximately 400 injuries and 
10 deaths each year. One method of increasing mine 
stability is to drill and bolt the weak mine roof after a 
portion  of  the  coal  seam has  been  removed.  Mine 
ground  control  has  been  thoroughly researched  for 
the last several decades. Yet, mine stability problems, 
such as roof falls and rock bursts, continue to kill or 
injure people every year. Over half of the most recent 
fatalities have occurred under supported roof [8]. 

Mine  workers  have  limited  information  about  the 
lithology of the rock surrounding the coal seam. If a 
local and detailed lithology of the surrounding rock 
could be  determined,  mines  could  better  assess  the 
effectiveness of the roof bolts, alert miners to local 
hazards,  augment  ground  control  plans,  and  thus, 
greatly  improve  mine  safety.  Years  of  effort  have 
been  dedicated  to  researching  methods  of 
characterizing  the  mine  strata  in  order  to  improve 
safety. 

This  research  investigates  using  the  physical 
parameters of a roof bolt drill, such as torque, thrust, 
rotary speed  and  penetration  rate,  to  train  a  neural 
network to classify rock. Section 2 discusses relevant 
coal  mining  background,  defines  the  problem  and 
reviews research that uses a similar approach to ours. 
Section  3  presents  a  detailed  description  of  the 
method  in  which  the  drill  information  is  used  to 
classify  materials  while  section  4  presents  the 
experiments and results. Then we present our latest 
experimental tests and results. Finally, future research 
plans are outlined in section 5.

2 BACKGROUND

The  most  common  means  of  attaining  lithological 
information  before  mining  begins  is  with  pre-mine 
exploratory drilling. However, this is expensive and 

therefore,  sparsely  spaced.  Core  logs  give  limited 
information about the coal bed and surrounding strata 
and  with  limited  accuracy.  Drill  cores  miss  local 
geologic  anomalies  that  pose  a  hazard  to  miners. 
Furthermore,  the  process  of  mining  continuously 
changes a  mine’s  structural  conditions.  The  overall 
safety of a mine could be greatly enhanced with real-
time monitoring of local structural conditions as the 
mining progresses. Figure 1 shows the cross-section 
of a typical coal mine corridor.

Figure 1. Underground Coal Mine Cross-Section

One hazard is severely fractured or delaminated roof 
layers  that  cannot support  their  own weight.  Often, 
weak strata cannot withstand the stresses produced by 
large overburden, and as a result, the roof and floor 
heave  and  the  ribs  bulge,  constricting  the  mine 
opening.

The  most  common hazard  detection  techniques  are 
reactive in nature, such as extensometers, and sense 
changes that signal a hazard is imminent. Often, the 
experienced mine worker is the best hazard detector, 
because of his familiarity with the feel and sound of 
the machines. But the mine worker is also the most 
vulnerable  of  all  detectors.  There  has  been  little 
success  in  an  effective  pro-active  measurement 
device  of  local  ground  conditions  in  situ such  as 
ground  penetrating  radar,  ultrasonic  sensors,  and 
instrumented roof bolts.
In contrast, there has been extensive research into all 
types of precision drilling. This research has provided 
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valuable insights into drilling analysis. Ramirez and 
Thornhill  [5]  monitored  printed  circuit  board  drill 
wear using drill force spectrum analysis and a sensor 
fusion technique to  combine this data  and reported 
that in some cases, cutting forces are related to chip 
segmentation  frequency,  which  depends  on  the 
physical properties of a material. Kaburlasos et al. [2] 
used learning techniques  to associate  drilling thrust 
and torque recorded during surgery with the thickness 
of an inner ear bone being drilled, in order to predict 
drill  breakthrough and prevent damage to other  ear 
tissue. 

There have been only a handful of groups that have 
researched  intelligent  drilling  for  mining  and 
construction applications using rotary drills. Leighton 
et al [4] used an instrumented rotary blasthole drill to 
correlate  drill  performance  and  strata  with blasting 
variables to plan open pit blasting. They were able to 
discover  an  empirical  relationship  between  drill 
thrust, penetration rate and a material’s resistance to 
breakage.  Scoble  et  al  [6]  used  drill  monitoring to 
verify coal-rock  boundaries  in  a  surface  coal  mine 
using  a  rotary  blasthole  drill.  They  calculated  the 
specific energy of drilling (SED)—an estimate of the 
rotational  and  linear  energy  used  to  drill—and 
compared it to known strata strength and delineation. 

King and Signer [3] have interpreted data from a coal 
mine  drill  using  learning  techniques.  They  used 
unsupervised  learning  to  classify  underground  coal 
mine roof  drill  data  into clusters and then used the 
classifications to train a neural network on other drill 
data.  Similarly,  Utt  [11]  used  a  neural  network  to 
classify rock based on SED. His work assigned a soft, 
medium, or hard to the quantified drill information so 
that  a  miner  could be warned of  weak strata  when 
bolting up the mine roof. Both King and Signer and 
Utt  chose  an  automated  approach  to  characterizing 
coal  mine  strata,  but  they  made  assumptions  that 
differentiate  their  work  from  this  research.  Both 
categorized strata by relative strength estimated from 
the drill parameters. Each group had positive results, 
but  primarily for  the  cases  in  which two layers  of 
strata had widely differing compressive strengths. 

Many  researchers  have  used  SED  as  a  way  of 
characterizing strata. This is acceptable if one wants 
to  estimate the relative strength between the layers 
and  other  geological  features.  However,  SED 
depends on how finely the rock is ground at the bit. 
Using SED to estimate the relative strength between 
materials  could  be  misleading,  particularly  if  the 
manner of drilling is not constant. Furthermore, SED 
alone cannot be relied upon to  distinguish between 
two materials because there are cases where different 
strength materials  are  similar  in  strength  (coal  and 
shale  have  overlapping  ranges  of  compressive 
strength) or seem similar in strength (such as a strong 

material being fractured or drilling at different rates 
for  each  material).  By  differentiating  between 
materials  in  addition  to  providing an  estimation  of 
some physical characteristics in situ, one can classify 
a material with a higher degree of confidence.

3. APPROACH

In  this  research,  we  intend  to  use  data  from  an 
instrumented  mine  drill  to  classify  a  small  set  of 
materials that are typically found around a coal seam. 
This  must  be  done  as  mining  takes  place,  without 
requiring a mine worker to perform classification, and 
regardless of the drill,  operator  or  local  conditions. 
Our  approach  is  motivated  by  the  fact  that  drill 
response is known to be correlated with the properties 
of  the  material  being  drilled.  For  example, 
researchers have verified that material properties such 
as abrasiveness, hardness, and strength directly affect 
the drilling process [10]. 

The  physical  properties  of  a  material  include 
mechanical  properties  (such  as  strength,  hardness, 
abrasiveness, and porosity), electrical properties, and 
molecular  structure  to  name  a  few.  Physical 
properties can have subtle or pronounced effects on 
the bit-rock interaction. For example, two materials 
can have similar compressive strengths and require a 
similar  amount  of  drilling  energy,  but  have  very 
different grain sizes and wear the drill bit at different 
rates. A material’s properties are also affected by in-
situ  conditions  such  as  confining  pressure, 
temperature, moisture content,  the presence of gases 
and the process of mining itself. 

The process of drilling is complicated to physically 
model.   There  are a large number of variables that 
influence the drilling process. The factors that affect 
drilling originate from the drill, the material, and the 
environment  in  which  the  drilling  takes  place. 
Variables  such  as  drill  string  stiffness,  drill  bit 
geometry and wear, method of flushing, and machine 
condition can significantly affect the performance of 
the  drill  and  the  bit-rock  interaction  [9].  These 
variables also differ between drills and operators.

Considering all  of the geologic,  environmental, and 
mechanical variables, drilling quickly becomes a very 
large,  real-valued,  multivariate  data  set.  Often,  the 
complex  relationships  between  these  dynamic 
variables are not well-understood or even known. For 
these  reasons,  this  drilling  application  is  a  good 
candidate for  machine learning. An early survey of 
these methods suggested that a neural network is an 
appropriate learning algorithm to use. 
A  neural  network  is  composed  of  layers  of 
interconnecting nodes as shown in Figure 2 [7]. The 
drill sensor values are the input layer and the material 
identity (shown in binary form) is the output layer. 
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Every  node  is  conneced  by  a  constant  real-valued 
number, or weight, to all the nodes in the succeeding 
layer. The number of hidden layers and nodes in the 
layer determines the complexity of the network and 
the functions it can represent. The goal of training the 
network is  to  minimize the error  of  classifying the 
material.  Therefore,  training is an iterative process: 
propagate  inputs through the network,  calculate  the 
error  between network output and actual  output (or 
target),  and  adjust  weights  by  backpropagating  a 
function  of  the  network  error.  The  cycle  continues 
until  a minimum error  is  attained or  a user-defined 
number of training iterations is reached. 

Figure 2.  Neural Network Configuration

To help the neural network make use of the complex 
relationships between all of these variables, we have 
augmented the drill sensors with additional “virtual” 
sensors. These sensors are not physical sensors, but 
functions  of  the drill’s  sensors.  They can represent 
complex  relationships  between  drill  behavior  and 
material properties. The information from the virtual 
sensor is another drill parameter and another variable 
for a neural network to use. 

The following sections present an iterative approach 
of  gathering  laboratory  and  coal  mine  drill  data, 
establishing a set of real and virtual sensors, training 
a neural network to classify the drilled materials, and 
evaluating the classification results. 

4. EXPERIMENTS

4.1 Experimental Apparatus.

Our  drilling  apparatus  consists  of  a  portable, 
hydraulically-powered,  manually-operated,  water-
cooled coal mine drill instrumented with sensors, data 
acquisition  hardware,  and  a  laptop  computer  (see 
Figure 3 below). The electronic hardware is isolated 
from the drill  so that  it  can operate  in a  real  mine 
environment.  The  data  acquisition  system  is  in  a 
waterproof box, with one cable running to the sensors 
and another cable connecting to the laptop which can 
be  taken several  feet  away from the actual  drilling 
site. 

Figure 3. Laboratory Drill Apparatus and Setup

The  drill  parameters  that  are  recorded  are  torque, 
thrust,  rotary  speed,  hydraulic  pressures  and  drill 
position. A highly accurate six-axis, decoupled force-
torque sensor is connected in-line between the drill 
motor and the drill  carriage.  Hydraulic pressures of 
the  thrust  and  rotation  motors  inlet  and  outlet  are 
recorded.  The  reason  for  this  is  to  assess  the 
feasibility of measuring thrust and torque values from 
less expensive sensors for a real-world system. The 
rotary speed is measured using a magnetic sensor and 
a collar with four embedded magnets attached to the 
spinning  drill  chuck.  Using  LabVIEW  the  sensor 
readings  are  captured  at  a  constant  rate,  and  drill 
penetration rate is calculated off line, using the drill 
bit position readings at known, fixed time steps.

Our laboratory drilling set-up includes an adjustable 
frame  to  support  the  drill  as  it  drills  horizontally 
through  layered  concrete  test  blocks.  The  drill  is 
supported  vertically  with  cables.  When  a  hole  is 
drilled, the drill mast is expanded between the steel 
frame  and  the  concrete  test  block.  The  linear  and 
rotary  movement  of  drilling is  controlled  manually 
while the computer controls the data acquisition. The 
thrust  motor  valve  is  held  fully  opened,  while  a 
hydraulic restrictor valve is used to keep the flow rate 
at a maximum value if with the goal is to keep the 
penetration rate constant. The rotation motor valve is 
held fully opened, but the flow is not controlled. To 
keep  the  drill  hole  as  clean  as  possible  from drill 
fines, the water is turned on full-flow each time a hole 
is drilled to minimize unintended regrinding. 

4.2 Data Collection and Processing.

We have gathered data on about 40 holes drilled into 
a three foot thick concrete test block. The 3’x3’x5’, 
8,000  lb  test  block  has  five  layers  of  concrete  of 
different strengths and materials. Each concrete mix 
was  tested  for  compressive  strength.  The  physical 
characteristics of each layer are given in Table 1. We 
drilled holes into the concrete test block  in a rough 
grid pattern. We also drilled and recorded about 30 
holes at the Bruceton Coal Mine in Pittsburgh.

091_TA3.doc- 3 –



Layer 1 2 3 4 5
Concrete

 Mix
Grout Lime

stone
Fly-
ash

H.E.S H.E.S

Comp.  
Str. (psi) 1,900 5,600 1,300 4,500 4,300
Thick-

ness (in) 11 5 9 4 7

Table 1. Concrete Test Block Characteristics (H.E.S. is 
High Early Strength concrete)

It took, on average, 90 seconds to drill a hole into the 
concrete  test block. A typical  data file has between 
60,000 and 100,000 data points, each with seven real-
valued  sensor  readings:  force  and  torque  from the 
force-torque sensor, hydraulic pressures at the thrust 
and  rotation motor  inlets  and  outlets,  drill  position 
and rotary speed.  Figure 4 is an example of sensor 
data recorded while drilling a hole through five layers 
of  concrete  (abscissa  is  drill  position,  ordinate  is 
sensor readings)

Thrust

Torque

 Layers   1                   2                3           4      5

Pressures

time

Figure 4. Concrete Drill Hole Sensor Recordings for 
One Drill Hole.

The  drill  sensor  data  used  in  these  experiments  is 
post-processed.  The  output  of  the  string 
potentiometer is filtered with a capacitor,  while the 
force-torque  sensor  uses  a  low-pass  filter.  The 
conversion  of  magnet  pulses  to  rotary  speed  uses 
software filtering. The size of each drill  data file is 
reduced  for  training  the  neural  network  and  to 
facilitate in the analysis of real  and virtual sensors. 
After calculating the drill penetration rate, each drill 
data  file is  sub-sampled by 1% (a  plot  of the sub-
sampled  file  is  very  acceptable  when  visually 
compared to it’s parent file).  These files are further 
processed  by  choosing  data  points  from  clean 
segments of each material  and leaving out areas  of 
material  transition or  drill  start  or  stop points.  The 
cleaned files have between 500 and 1500 data points 
comprising  a  segment  of  sensor  values  for  each 
material that was drilled in that particular hole. Each 
is labeled by hand and normalized over the range of 
sensor  values.  Finally,  each  segment  of  data  is 
collapsed into a  single data point  in N-dimensional 
space, where N is the number of fields. The fields of 
a data point are, for example, average thrust over the 
drill segment, and N is different for each experiment.

4.3 Neural Network Training and Testing

We  are  using  Netlab’s  [1]  back  propagation 
algorithm  with  a  two-layer  feed  forward  neural 
network.  The  class  labels  are  converted  to  binary 
numbers for neural network training and testing, and 
then converted back to an integer classification using 
a best-of-N voting scheme. 

The  following  experiments  have  been  designed  to 
determine  if  simplified  drill  data  from  concrete 
blocks  can  be  classified  into  the  5  hand-labeled 
materials,  and  to  do  a  sensitivity  analysis  of  drill 
parameters.  A neural  network with no hidden units 
was  trained  and  the  poor  results,  averaging  80% 
classification error, indicate that there are non-linear 
relationships  in  the  drill  sensor  data.  Subsequent 
networks used 4 hidden units and were trained over a 
range of iterations.

We used  several  sets  of  attributes  as  inputs  to  the 
neural network (see Table 2) including measurements 
from  the  physical  sensors  (labeled  p)  as  well  as 
virtual  sensors  (labeled  v).  To  prevent  the network 
from learning material class solely based on position 
of the drill (since every hole was drilled in the same 
concrete  test  block),  the  drill  bit  position  was  not 
used as an input to the neural network.

Attributes Experiment

1 2 3 4 5 6 7 8 9 10 11 12
Mean

Thrust  (p)
Torque (p)
RPM (p)
Penetration (p)
Rotary In (p)
Rotary Out (p)
Thrust In (p)
Thrust Out (p)
Thrust Diff. (v)
Rotary Diff. (v)

Std. Dev.
Thrust (v)
Torque (v)
Penetration (v)
Thrust Diff. (v)
Rotary Diff. (v)

Table 2.  Attribute Sets Used in the Experiments.

There  are  14  drill  hole  data  files  used  for  the 
experiments. Each data set is generated by randomly 
choosing  11  of  the  14  files  for  training  and  the 
remaining 3 for testing. Each experiment begins with 
training and testing 100 unique data sets on a neural 
network. An average test error rate is computed from 
the  test  error  rates  of  the  100  data  sets.  This  is 
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repeated with a range of values for the ‘number of 
iterations’  parameter.  The  iteration  value  with  the 
lowest average error rate is reported.

4.4 Experiment Results

The average error  rates for  each experiment,  and a 
breakdown of the error rates by material are shown in 
Table 3. 

Error Rates by Material (%)
Experimen 1 2 3 4 5 Avg

1 0 0 1.5 15.1 5.8 4.5

2 4.2 4.1 13.9 33.3 27.5 15.2

3 48.9 21.3 60.5 83.6 84.4 59.8

4 12.7 6.8 32.2 11.1 48.6 22.3

5 0.2 0.9 9.9 25.8 37.1 14.8

6 0.1 0.8 6.3 29.8 32.3 13.8

7 44.8 31.7 63.2 61.7 68.3 54.0

8 0.0 14.5 5.8 34.7 66.7 24.3

9 14.0 8.6 8.6 87.2 91.8 42.0

10 57.6 16.2 43.4 93.9 90.5 60.3

11 76.8 62.6 63.8 86.0 97.2 77.3

12 54.8 47.7 77.2 92.3 97.1 73.8

Table 3. Error Rates by Material for Each Experiment

Experiment 1 used all of the physical sensor values—
thrust,  torque,  rotary  speed,  penetration  rate  and 
motor inlet and outlet pressures—as well as a number 
of the virtual sensors in its attribute set. This ‘base’ 
set of attributes had the lowest average classification 
error  rate  of  the  12  experiments,  with 4.5% error. 
This result verifies that a neural network can classify 
the five materials and it also serves as a value with 
which to compare results of the other experiments.  

Figure  4  shows the  classification  error  rates  for  a 
range  of  iterations.  Increasing  the  number  of 
iterations  improves  the  classification  accuracy until 
about  90  iterations,  where  it  levels  off.  Material  5 
consistently has the highest  error  rates.  This is true 
for all of the experiments which are described later.

Increasing Iterations

C
la

ss
if

ic
at

io
n 

E
rr

or

material 5

material 4

material 2

materials 1,3

Figure  4.  Network  Classification  Error  Rates  vs. 
Number of Iterations Using Experiment Group 1. Each 
line represents a material.

Figure  5  below  is  an  image  representation  of  the 
network’s confusion matrix. The confusion matrix is 
a  measure  of  how well  the  network  performed  on 
each  material  class  and  shows  where  the  mis-
classifications  occurred.  The  ordinate  axis  is  the 
network’s classification of the data sets in experiment 
1. The columns show the percentages of the material 
classes  they actually are.  For  example,  materials  1 
and 2 were correctly classified 100% of the time, and 
material 3 was misclassified as material 4 about 10% 
of the time. 

1        2         3         4         5

1

2

3

4

5

Figure 5. Experiment 1 Confusion Matrix (lighter 
colors represent higher numbers).

The  purpose  of  experiments  2  through  6  was  to 
evaluate the the relative discriminatory power of the 
classic  drill  parameters,  thrust,  torque,  rotation rate 
and penetration rate. The network classification error 
rates for experiments 2 through 6 are shown in Table 
3.  Experiment 2 used all four drill parameters, while 
the  next  four  experiments  removed  thrust,  torque, 
rpm, and penetration rate,  one at a time. Removing 
the  rotary  speed  or  penetration  rate  caused  the 
classification error to increase mildly. Removing drill 
thrust  significantly  impairs  the  network’s  ability to 
classify the materials. This may be due to the fact that 
rotation  rate  and  penetration  rate  were  relatively 
constant compared to thrust and torque, so that these 
two  parameters  became  even  more  critical  in 
classifying the materials

Experiments 7 and 8 replaced the sensor values from 
the  highly-accurate  force-torque  sensor  with  the 
sensor  values  from  the  less  expensive  pressure 
transducers installed at the inlet and outlet  ports of 
both hydraulic motors. Experiment 7 achieved a poor 
classification  rate  with  54%  error.  Experiment  8, 
however,  trained  the  network  using  5  additional 
virtual sensors and the average error rate dropped to 
24%,  less  than  half  that  of  experiment  7.  This 
suggests  that  the  addition  of  virtual  sensors  to  the 
sensor  suite  may  make  it  possible  to  use  the 
inexpensive and robust pressure sensors in lieu of the 
expensive and delicate strain gauge sensor to classify 
mine roof rock. 
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A single drill parameter (force, torque, rotary speed 
and penetration rate) was used to train a network in 
Experiments 9 through 12. Training the network with 
only drill  thrust  measurements produced  the lowest 
error  rate.  This  result  agrees  with  the  results  of 
Experiment  3  which showed that  of  the  four  same 
parameters,  removing  drill  thrust  from the  training 
caused the most increase in error. Closer examination 
of  the results  of  Experiments 9  through 12 reveals 
that  although  drill  thrust  is  the  most  important 
parameter in classifying materials 1, 2 and 3, all four 
drill  parameters—thrust,  torque,  rotary  speed  and 
penetration  rate—appear  to  be  equally  poor  at 
classifying  materials  4  and  5.   This  is  additional 
evidence  that  there  is  probably  some  other  drill 
parameter  that  can  better  distinguish  these  two 
materials.

Experiments  1,7  and  8  indicate  that  the  standard 
deviations  of  the  drill  parameters  are  useful  in 
increasing the degree of accuracy in the classification 
of the concrete test materials. One explanation may 
be  that  the  concrete  mixes  range  in  the  size  and 
concentration  of  aggregate,  causing  the  drill 
vibrations  to  be  different  for  each  material.  This 
effect is better represented in the larger,  unsampled 
data  files,  and  may prove  to  be  even  more  useful 
where  changes  in  the  vibrations  over  time  can  be 
tracked. Experiments 7 and 8 also highly suggest that 
virtual sensors are useful and that they improve the 
classification accuracy of similar materials. 

5. FUTURE WORK

In the experiments presented in this paper,  the data 
files used to train and test the neural network were 
reduced to a few points. This gave the network very 
clean data to train with. The next step is to test the 
network on the larger data sets. It is likely that for the 
larger  datasets  we  will  need  to  discover  and  use 
additional  virtual  sensors.  These  experiments  also 
used a single network architecture and did not vary 
the error function or search algorithm used to tune the 
weights. Subsequent experiments should apply model 
selection,  so that  the best  network architecture  and 
training  algorithms  can  be  determined  prior  to 
exploring  virtual  sensors.  Future  experiments  will 
focus  on  classification  with  noisy  drill  data  and 
understanding  relationships  between  drill  and 
material.  Future  research  also  includes  classifying 
materials with data gathered at an underground coal 
mine.
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