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Abstract: Multi-resolution pattern classification (MPC) is an image segmentation technique 
that extracts features from an image and segments the image into several featured areas. Two 
resolution levels are contained in the MPC approach, the fine resolution level and the coarse 
resolution level. Pre-selected features, such as means and variances, will be computed, and 
then clustered using a linear or nonlinear classifier. This paper introduces the MPC approach 
to process steel bridge painting images with the hope of obtaining better segmentation results 
on rust identification.
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1. INTRODUCTION

A fundamental and essential step to describe an 
image  is  to  extract  the  underlying  features  of  the 
scene. Typical applications include medical imagery, 
texture  segmentation,  remote  sensing,  geology,  and 
robotics.  A couple of papers  have widely surveyed 
different  techniques  in  feature  selection  and  image 
segmentation  [1,2,3].  Although  a  broad  variety  of 
methodologies  have  been  applied  to  image 
segmentation  problems,  focuses  are  still  placed  on 
the development of feature-based approaches, which 
are  the  main  concerns  of  this  paper.  Several 
algorithms have been investigated and compared in 
terms  of  how  much  image  information  can  be 
contained  in  the  proposed  statistics.  The  results 
indicated  that  the  spatial  gray  level  dependence 
method  (SGLDM)  is  the  most  powerful  algorithm 
among  the  tested  algorithms.  In  addition,  the  gray 
level difference method (GLDM) also works well on 
feature  extraction  in  the  spatial  domain.  Thus,  the 
statistics  used  in  both  SGLDM  and  GLDM  were 
adopted  as  the  fundamental  image  features  of  the 
MPC method [4].

Similar  to  the  region-based  algorithms,  the 
chosen statistics were computed and stored region by 
region, and then each region was classified according 
to  the  obtained  statistics.  Apparently,  the  multi-
resolution  idea  can  be  utilized  to  cope  with  this 
fashion [5,6,7]. At the measurement level (or the fine 
resolution level), an image is divided into blocks and 
each block is corresponding to one pixel at the coarse 
resolution  level,  where  each  dimension  represents 

one category in the feature space. The pixels at the 
coarse  resolution  level  will  be  classified  using  the 
clustering  techniques  from  the  pattern  recognition 
field.  After  computing  the  pre-chosen  features  for 
each block at the fine resolution level, each pixel at 
the coarse resolution level, which is associated with 
one single  block at  the measurement  level,  will  be 
mapped into a high dimensional space where every 
dimension  stands  for  one  chosen  feature.  Typical 
linear or nonlinear classifiers or clustering algorithms 
are then used to conduct class separation in the high 
dimensional feature space.

Two  major  concerns  are  involved  in 
discriminating  the  features  in  a  high  dimensional 
space. First, the types and number of samples in the 
virtual feature space should be identified. Second, an 
appropriate  classifier  should be selected for  feature 
clustering.  The  first  concern  depends  on  the  pre-
selected statistics and the size of partition blocks. The 
dimension  of  samples  equals  to  the  number  of 
features.  In  general,  four  to  eight  features  are 
adequate for segmentation purposes. More partitions 
in an image lead to a larger sample size. For a fixed 
number  of  features,  more  samples  imply  longer 
computation  time.  Obviously,  these  limitations 
somewhat  make  a  trade-off  between  the  efficiency 
and  the  performance  necessary.  As  for  the  second 
concern, the determination of classifiers has a strong 
influence on the result  of segmentation.  The Bayes 
error  is  usually considered  as  the best  criterion for 
feature  evaluation,  and  a  posteriori  probability 
functions  of  samples  are  the  ideal  features. 
Unfortunately,  a posteriori  probability functions  of 
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samples  are  practically  hard  to  obtain.  Even  using 
nonparametric  density  estimation  techniques,  the 
resulting Bayes errors usually have severe biases and 
variances  [8].  Therefore,  some  other  criteria  are 
needed for feature classification. Generally,  a linear 
classifier  is  effective  and  suitable  for  feature 
discrimination. Nonlinear classifiers may be expected 
to improve the segmentation performance,  with the 
expense of more computational efforts.

2. STATISTICAL FEATURES

The  statistical  features  adopted  in  the  multi-
resolution pattern classification (MPC) method were 
originated  from  the  spatial  gray  level  dependence 
method  (SGLDM)  and  the  gray  level  difference 
method (GLDM) [3,9].

2.1 Features of SGLDM

The  spatial  gray  level  dependence  method  is 
based  on  the  estimation  of  the  second-order  joint 
conditional  probability  density  function  p(i,j|d,θ), 
where  θ  = 0o, 45o, 90o, 135o, 180o, 225o, 270o, and 
315o.  p(i,j|d,θ) represents  the  probability  of  going 
from gray level i to gray level j, where d is the inter-
sample  distance  and  the  angle  θ represents  the 
direction. Each  of  the  estimated  second-order  joint 
conditional  density  functions  can  be  written  in  the 
matrix form:

Φ(d,θ) = [p(i,j|d,θ)].
The  estimated  probability  matrices  are  assumed  to 
have the following properties:

Φ(d,0o) = ΦT(d,180o),
Φ(d,45o) = ΦT(d,225o),
Φ(d,90o) = ΦT(d,270o),
Φ(d,135o) = ΦT(d,315o),

where  ΦT(d,θ) denotes  the  transpose  of  the  matrix 
Φ(d,θ). The  main  spatial  gray  level  dependence 
matrices,  S0(d),  S45(d),  S90(d), and S135(d) can then be 
defined as:
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From  these  matrices,  four  useful  features  can  be 
defined as follows:
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Furthermore, Sθ(i,j|d) is the (i,j)th element of Sθ(d) and 
N is  the  number  of  gray  levels  in  the  image.  The 
number of gray levels is usually smaller than 256 in 
image segmentation so as to reduce the computation 
time. According to past experiences,  32 gray levels 
are adequate for binary segmentation.

2.2 Features of GLDM

In  order to estimate the underlying statistics of 
the gray level difference method, gδ(m,n) = |g(m,n) – 
g(m+∆m  ,  n+∆n)|  is  defined,  where  δ is  the 
displacement of  (∆m ,  ∆n) with respect to the pixel 
(m,n).  Let  p(i|δ) represent  the  probability  density 
function associated with the possible values of gδ:

p(i|δ) = P(gδ(m,n) = i)
Consider only four special cases of vector δ = (∆m , 
∆n).  They  are  (0,d),  (0,  –d),  (d,0),  and  (–d,0), 
respectively,  where  d  refers  to  the  inter-sample 
spacing  distance.  From  each  of  these  density 
functions, four statistics are defined as follows:
1. Contrast:
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Since  each  feature  of  SGLDM  depends  on  the 
parameter  θ that has four major angles, 0o, 45o, 90o, 
and 135o, there are actually 16 statistics, 4 for each 
feature.  Similarly,  the  statistics  of  GLDM  are 
determined  by  the  direction  of  the  displacement 
vector  δ.  Thus,  there are four  possibilities for  each 
feature.  Evidently,  32  statistics  at  most  can  be 
measured by evaluating all the features  of SGLDM 
and GLDM.
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3. PROBLEM FORMULATION

The  primary  concept  of  this  technique  is  to 
discriminate  the  samples  in  the  feature  space  by 
either linear or nonlinear classifiers. Thus, it can be 
viewed  as  a  typical  clustering  problem  of  pattern 
recognition. First, partition the image into regions or 
blocks and virtually create the corresponding coarse 
resolution  lattice,  as  shown  in  Figure  1.  Figure  1 
depicts the multi-resolution pyramid that  shows the 
relationship between the two resolution levels. Using 
the  aforementioned  methods,  each  pattern  block  at 
the  measurement  level  corresponds  to  a  certain 
number of features. Because of the links between the 
two resolution levels, every single pixel at the coarse 
resolution level can be represented by a vector whose 
elements are exactly the features generated from the 
corresponding  pattern  block  at  the  fine  resolution 
level. Repeating this procedure, groups of samples in 
a high dimensional feature space can be made. Figure 
2 demonstrates  the distribution of  the samples  that 
form three  categories  in a three dimensional  space. 
The  three  axes  stand  for  the  three  pre-selected 
features  and  the  size  of  samples  is  equal  to  the 
number of partitions at the fine resolution level. The 
next  step  is  to  classify  the  samples  with  an 
appropriate  clustering  method  [8].  After  clustering 
the samples, the resulting segmentation image can be 
constructed block by block with all  the pixels in a 
block  being  categorized  into  the  same  pattern.  In 
addition to the features of SGLDM and GLDM, other 
specific  statistics  can  also  be  used  as  potential 
features in this method [10].
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Figure 1. Multi-Resolution Pyramid
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Figure 2. Distribution of Samples

In  a  word,  the  problem  considered  is  a 
supervised image segmentation problem and the only 
supervised information is the number of features in 
an  image.  Through  the  multi-resolution  pattern 
classification method, the coarse lattice is composed 
of  feature  vectors  whose  elements  are  the  selected 
statistics.  Application  of  a  proper  clustering 
algorithm  is  performed  to  classify  the  generated 
samples,  followed  by  labeling  the  corresponding 
pixels  at  the  fine  resolution  level  based  on  the 
clustering result of the samples. 

4. CLUSTERING

In the MPC method, parametric approaches are 
adopted for pattern clustering. The most widely used 
criteria are the class separability measures, which are 
shown as follows [8]:
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where S1 and S2 can be Sb, Sw, or Sm. The matrices Sb, 
Sw, and Sm are defined as:

• Within-class scatter matrix Sw:

∑
=

Σ=
L

i
iiw PS

1
;

• Between-class scatter matrix Sb:

∑
=

−−=
L

i

T
iiib MMMMPS

1
00 ))(( ;

• Mixture scatter matrix Sm:
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Mi and Σi are the mean matrix and the covariance 
matrix  with respect  to the  ith category.  Pi’s are  the 
probabilities  for  each  class  and  ∑ =
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where  L is  the  number  of  clusters.  The  class 
assignment  is  achieved  by  maximizing  the  class 
separability measure J1, where S1 and S2 are assumed 
to be Sw and Sm, respectively. Usually, the clustering 
algorithm is effective if the algorithm converges. 

Without  losing generality,  assume that  M0 = 0 
and  Sm =  I.  If  the  samples  obtained  do not  satisfy 
these conditions, the coordinate origin can be shifted 
and  the  data  can  be  whitened  with  respect  to  Sm. 
Notice that Sm is generally full-ranked. Then the class 
separability becomes  J1 = J = tr(Sw).  Assume there 
are N samples, X1, X2,…, XN, and each sample is to be 
classified to one of the  L classes,  ω1,  ω2,…, ωL, i.e., 
the ith (i = 1 to N) sample is to be categorized into the 
ki

th class  denoted  by  ωk (k=1  to  L).  The  clustering 
criterion J is a function of Ω and Γ, where Ω = [ω1,  
ω2,…,  ωL]T and  Γ = [X1, X2,…, XN]T. The algorithm 
adopted  is  called  the  nearest  mean  reclassification 
rule (NNR), which is defined as follows:
1. Initially  and  randomly  choose  an  initial 

classification,  Ω(0) and  calculate  M1(0),…,  
ML(0), where  Ω(0) and  Mj(0),  j=1,…,  L are the 
first iteration of Ω and the class means.
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2. Let  Nr denote the number of samples in the  rth 

class  and  the  samples  in  the  rth class  are 
represented  by  )(r

jX ,  j  =  1,…,Nr.  Then  the 
criterion can be rewritten as:
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3. Change  the  cluster  assignment  of  Xi from  the 
current class ki to class j at the mth iteration. Also, 
remove the term  2

)(mMX
iki −  from the Eq. (1) 

and add a new term 
2
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Since the second term of Eq. (2) does not depend 
on J, the reclassification of Xi at the mth iteration 
can be achieved by

)(minarg mMXj tit
−= ,

jiX ω→

In  the  other  words,  calculate  sample  mean 
vectors M1(m),…, ML(m) at the mth iteration, and 
reclassify each Xi according to the nearest Mj.

4. If  the  reclassification  of  any  Xi occurs,  then 
calculate  the  new  sample  mean  vectors 
M1(m+1),…,  ML(m+1) for  the  new  class 
assignment, and repeat Step 3. Otherwise stop.

Remarks:
1. The assumption about  the  nonsigularity  of 
Sm can  be  generally  satisfied  by  carefully 
adopting  the  features.  To  avoid  numerical  ill-
conditions  of  the  resulting  mixture  covariance 
matrix, the estimated features can be normalized 
to have the same level of values.  For instance, 
for each partition the feature  fi can be replaced 
by if ′ , where ][max/ iii fff ≅′ .
2. Only  the  means  contribute  to  the 
determination  of  the  classification  boundary. 
Covariance matrices do not affect the boundary. 
Apparently,  clusters  are  divided  by  piecewise 
linear  bisectors.  This  is  just  equivalent  to 
applying  a  linear  classifier  to  the  created 
samples.
3. The  initial  random  class  assignment  does 
not impose any extra constraints and instability 
on the algorithm.
4. The  iterative  NNR  algorithm  does  not 
guarantee convergence. Also, the process may be 
trapped at a local minimum point and fails to get 
a global  minimum [11]. However,  except these 
potentially uneven factors,  this approach works 
well in general.

One  of  the  major  reasons  of  choosing  the  NNR 
algorithm  is  that  the  number  of  categories  is 
necessary to be pre-assigned.  As mentioned before, 
the  supervised  techniques  were  used  for  image 
segmentation. Thus, it is quite natural to treat NNR as 
the fundamental linear classifier.

5. DISCRIMINATION OF RUST IMAGES

In  this  section,  the  multi-resolution  pattern 
classification (MPC) method will be applied to rust 
images,  in which the rust spots or areas need to be 
discriminated  from  the  background  such  as  the 
surfaces  of  bridges.  Basically,  the  quality  of  the 
acquired  images,  usually  color  ones,  has  a  deep 
influence  on  the  segmentation  performance. 
Unfortunately,  rust  images  sometimes  contain 
reflected  light  or  shadows.  The  basic  nature  of 
images can be characterized by two components: the 
illumination  and  the  reflectance.  This  illumination-
reflectance  model  can  be  used  as  the  basis  for  a 
frequency  domain  processing,  which  is  useful  for 
improving image quality by simultaneous brightness 
range  compression  and  contrast  enhancement  [12]. 
Before  applying  MPC  to  any  rust  images,  to 
overcome the effect  of  non-uniform illumination,  a 
technique  called  “homomorphic  filtering”  will  be 
used to pre-process the color rust images [12].

5.1 Homomorphic Filtering

An image denoted by f(x,y) can be expressed in 
terms of its illumination  i(x,y) and reflectance  r(x,y) 
as

f(x,y) = i(x,y)r(x,y).
The illumination component of an image is generally 
characterized  by  slow  spatial  variations,  while  the 
reflectance component tends to vary abruptly. These 
characteristics  are  particularly  useful  in  separating 
these  two  components  in  the  frequency  domain. 
Assume

z(x,y) = log f(x,y),
then

Z(u,v) = I(u,v) + R(u,v)
where I(u,v) and R(u,v) are the Fourier transforms of 
log  i(x,y) and  log  r(x,y),  respectively.  Since  the 
characteristics of the illumination and the reflectance 
distinguish  the  low  and  the  high  frequencies  of 
Z(u,v),  image  enhancement  (especially  for  non-
uniformly  illuminated  images)  can  be  achieved  by 
applying a homomorphic filter  H(u,v),  which could 
adjust  the low- and the high-frequency components 
differently. Typically, the filter tends to decrease the 
low  frequencies  and  amplify  the  high  frequencies. 
The  net  result  is  a  combined  dynamic  range 
compression  and  contrast  enhancement.  The 
homomorphic  filtering  approach  is  expressed  in 
Figure 3.

Generally, H(u,v) is a circularly symmetric filter. 
Figure 4 depicts the typical shapes of  H(u,v) and its 
cross section.

log F F T H (u ,v ) IF F T e xp g (x ,y )f (x ,y )

Figure 3. Homomorphic Filtering Approach
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(a) (b)

Figure 4. Typical Shape of Homomorphic Filter 
H(u,v):(a) frequency response, 

(b) cross section of frequency response

Figure 5 shows six color rust images.  Figure 5 
(c), (d), (f) are affected by non-uniform illumination 
and  with  low  contrast.  Before  applying  MPC  to 
segment rust and background, homomorphic filtering 
technique  was  utilized to  pre-process  these  inferior 
images and the filtered images are demonstrated in 
Figure 6.

(a) (b)

(c) (d)

(e) (f)
Figure 5. Color Rust Images

(c)

(d)

(f)
Figure 6. Original and Filtered Rust Images

5.2 Segmentation of Rust Images

After homomorphically filtering the rust images, 
the  original  color  images  are  converted  into  gray 
level images. At this stage, the goal is to differentiate 
the rust from the background by extracting the rust 
features  using the  MPC algorithm.  To enhance  the 
resolution of segmentation images, the partition size 
is set to be 4-by-4. The underlying statistics of MPC 
for  each  example  are  MEAN,  VAR,  and  the  one 
listed in Table 1, where MEAN and VAR stand for 
the  mean  and  the  variance  of  the  corresponding 
pattern block. The underlying number of gray levels 
is  32.  The  average  processing  time  is  60  seconds. 
Figure  7  and  Figure  8  demonstrate  the  resulting 
segmented  images.  The  results  indicated  the  MPC 
method is effective. As for the rust image shown in 
Figure  5(c),  the  seriously  non-uniform illumination 
lessens the local  contrast  in the shadow area.  Even 
after homomorphic filtering, the quality of the local 
contrast  is  not  well  improved,  as  shown  in  Figure 
6(c). 

Table 1. Statistics Used for the MPC method
Figure 5:

Statistics

(a)

COR
(SGLDM)

(b)

COR
(SGLDM)

(c)

COR
(SGLDM)

(d)

COR
(GLDM)

(e)

COR
(SGLDM)

(f)

COR
(SGLDM)
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(a)

(b)

(c)
Figure 7. Original and Segmented Rust Images 

((a) – (c))

(d)

(e)

(f)
Figure 8. Original and Segmented Rust Images 

((d) – (f))

6. CONCLUSIONS

In  this  paper,  the  multi-resolution  pattern 
classification  (MPC)  method  was  presented.  The 
major  contribution  of  this  method  was  the 
combination  of  the  multi-resolution  pyramid  image 
model and the pattern discrimination techniques in a 
high dimensional feature space. Experiments showed 
that  this  method  has  effectively  reduced  the 

computational  costs  and  successfully  segmented 
images.  In  addition,  the  homomorphic  filtering 
technique was introduced to adjust  the illumination 
and  the  reflectance  of  non-uniformly  illuminated 
images.
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