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Abstract: In this article we propose a path planning strategy for a parallel climbing robot. 
The robot must be capable of displacing along an “a priori” unknown trajectory, i.e. tubes 
or beams. Firstly we show the characteristics of the proposed robot. Next we briefly review 
the theoretic tools of parallel platforms, the inverse and forward kinematic needed for the 
path planning of 6-6 parallel  robot.  Then a new navigation algorithm for path planning 
based on the auto-centring of the bases is presented. We also show some simulations of the 
functioning of the algorithm. Finally, some conclusions and future work is presented.
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1 INTRODUCTION

The use of parallel platforms as mobile robots for 
the  maintenance  and  inspection  of  cylindrical 
structures,  i.e.  tubes  or  beams, is  motivated by the 
fact that this kind of robots has several advantages in 
front of robots with serial legs [1].

Based in a Stewart parallel  platform of 6 DOF, 
the  Miguel  Hernández  University  is  developing  a 
climbing robot  for  the pruning and maintenance  of 
palm trees. At figure 1 we show the first prototype of 
the robot.  The robot  is able to climb automatically 
using  a  path  planning  algorithm  based  on  the 
kinematics of the platform [2][3]. In general the robot 
can climb along any cylindrical  structure as beams, 
tubes and also the palm tree trunks. 

Figure 1. Parallel Climbing Robot. 
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We  have  developed  some  computational  tools 
based  on  the  multibody  dynamics  that  solve  the 
kinematic  and dynamic performance of  the parallel 
robot [4][5]. Using these tools we have tested a path 
planning  algorithm that  allows the  robot  to  evolve 
itself automatically along an unknown trajectory. We 
show several simulations that demonstrate the correct 
functioning  of  the  algorithm.  Nowadays  the 
incorporation  of  this  algorithm  to  the 
microcontrollers of the robot is being developed. 

First  of  all  the  characteristics  of  the  mobile 
parallel robot are detailed. Next we briefly review the 
theoretic tools of parallel platforms, the inverse and 
forward kinematic needed for the path planning of 6-
6 parallel  robot  and we explain the strategy of the 
path planning. Finally we show some simulations of 
the functioning of the algorithm.

 
2 ROBOT STRUCTURE

The  mobile  robot  proposed  has  a  mechanic 
structure  based  on  a  6-6  Steward  platform with  6 
degrees of freedom [6], figure 2. The robot is made 
with  two  hexagonal  rings  that  are  linked  with  six 
linear power actuators. The actuators are linked to the 
base through universal joints, and to the final effector 
through spherical joints. The actuators give the robot 
six degrees  of  freedom that  are  needed  to  position 
and orientation itself in the workspace.

Figure 2. Robot Structure.

The  parallel  robot  has  a  control  architecture 
composed by a group of sensors, a data acquisition 
card  and  a  control  card.  This  control  architecture 
allows the robot to move itself automatically.

3 ROBOT KINEMATICS

The  study  of  the  kinematics  is  based  on  the 
multibody  dynamics  [7][8].  The  type  of  robots 
proposed  in  this  paper  are  based  on  a  parallel 

platform with 6  degrees  of  freedom, with a  RRPS 
kinematic chain (Rotational_Rotational Prismatic and 
Spherical), where the RR degrees of freedom belongs 
to  an  universal  joint,  P is  a  prismatic  degree  of 
freedom that belongs to the linear power actuator and 
S is the spherical joint connecting the linear actuator 
with the final effector.

3.1 Inverse Kinematics

The inverse kinematic solution that is calculated 
from the position and orientation of the final effector 
allow us to get the necessary command variables to 
fit with a programmed path planning.

The inverse geometric model of a RRPS platform 
implies establishing the values of the joint variables 
of the kinematic chain for a certain configuration of 
the final effector. The raising of the solution can be 
easily obtained from the next vectorial description on 
generalized coordinates, figure 3:

Figure 3: General structure of a 6 DOF parallel 
manipulator with RRPS kinematic chains.

0
´ ssArr −+= icABi                   (1)

In  other  words,  the inverse kinematics calculate 
the needed  displacements of  the linear  actuators  to 
get  the  position  and  orientation  required  and  the 
generalized  coordinates  vector  (in  terms  of  Euler 
parameters)  that  indicates the final  configuration of 
the robot. A more detailed explanation can be found 
in [4].

3.2 Forward Kinematics

The  forward  kinematics  of  a  parallel  platform 
studies  the  relationships  between  the  command 
variables  of  the  linear  actuators  and  the  resultant 
position of the final effector.

There are in specified literature several methods 
for the geometric calculation of direct kinematic of 6 
DOF parallel platforms, some of them allow us to get 
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the possible solutions through the use of polynomics 
that  result  of  the  geometric  modelling  of  the 
kinematic chains of the platform, for example in [9], 
the 16 possible solutions for a 6 DOF platform are 
calculated,   [10]  and  [11]  prove  that  the  Stewart 
platform have 12  possible solutions. 

We are  using a numerical  method based on the 
initial  estimation  of  the  generalized  coordinates 
vector  qi  will  be  exposed.   In  general,  a  6  DOF 
RRPS parallel  platform is  formed by 12  links that 
constitute  the  linear  actuators.  Each  couple  of  the 
previous  links,  are  linked  between  them  by  a 
prismatic  joint,  and  each  one  of  the  extremes  are 
connected to the base and to the final effector through 
an  universal  joint  and  a  spherical  joint.  Then  the 
generalized coordinates vector will be represented as: 
q =  [ q1 , q2 , q3 ,  ....  q13 ] T

x191  where  q1  is  the 
generalized coordinates system of  the final  effector 
and  q2 , q3 ,....  q13  correspond  to  the  unit  of 
generalized  coordinates  assigned  to  the  couple  of 
links that form the linear actuators. In general, each 
link is defined by a generalized coordinates system 
where:  [ ]Prq iABii ,= T   with  [ ]T

iiii zyxr ,,=  and 

the Euler parameters: [ ]Tiiii
i eeeeP 3210 ,,,=

The description of the kinematic chain of a RRPS, 
is based on the constraints vector: 
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Where  ( ) 01x72qk =φ  is  the  vector  of  the  72 
holonomic  constraints  imposed  by  the  prismatic, 
spherical and universal joints.  ( ) 01x6t,qD =φ  is a 
vector of 6 constraints imposed by the actuators, that 
in this case they are function of the command joint 
variables  for  which  direct  kinematics  will  be 
calculated.  ( ) 1x13qPφ  is a vector of 13 constraints 
for the normalisation of the Euler parameters.

A more detailed explanation of how to obtain this 
constraints vector can be found in [4].

3.3 Numerical calculation of the kinematic solution.

As it was mentioned before, to calculate the forward 
kinematic  solution  we  start  from an  approximated 
generalized coordinates vector qi, and the command 

variables. For these effects, it is commonly used the 
Newton-Raphson method:

( ) ( )
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where φ q  is the Jacobean of the vector of constraints 

described in (2)   y  ( )q j 1+  is the forward kinematic 

solution when ( ) 0≈∆ q j . 

4 PATH PLANNING

The  path  planning  is  based  on  an  autoguided-
algorithm. The needed information for the guided is 
obtained  from ultrasonic  sensors  allocated  on  each 
ring. The developed algorithm consists on a process 
of detection and correction of the centring error. The 
robot  can displace  itself  along a spatial  curve  in  a 
continuos way. Depending on the expected curvature 
of the trajectory, we divide the path in a number of 
intervals.  On  each  interval  the  ultrasonic  sensors 
detect the centring error, and with these information 
and the inverse kinematics, the next displacements of 
the  linear  power  actuators  are  calculated.  The 
calculated displacements try to correct the error in the 
next  interval.  The  initial  and  final  positions  of  the 
effector or the base constitute a vector that allows us 
to  calculate  the  orientation.  Starting  from  the 
sensorial  information  and  the  algorithms 
implemented  on  the  microcontrollers  the  robot  can 
follow  an  unknown  trajectory  automatically, 
positioning  and  orienting  itself  according  with  the 
curvature of the path. 

4.1 Description

Each one of the hexagonal rings has a rotational 
joint  that  allows  the  ring  to  be  opened  manually, 
figure  4.  This  permits  the initial  positioning of  the 
robot round the structure to climb.
 

Figure 4. Superior View of the robot. The rotational 
joint permits the opening of the rings.
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Besides, each ring has a press system made of tree 
linear actuators, figure 5, that allow the subjection of 
the robot to the structure.  There are also protection 
springs that guarantee the robot to stay fastened to the 
structure if the power supply falls down.

Figure 5. View of the press system on each ring.

4.2 Displacement strategy

First  of  all  the  robot  is  allocated  on  the  initial 
position of  the structure rounding it.  The  rings  are 
opened manually and then, when the robot round the 
structure, the rings must be closed. Next, the robot is 
fixed to the structure by activating the press system of 
both rings. Figure 6 shows the initial position of the 
robot round a structure.

Figure  6.  Initial  position  of  the  robot  rounding  a 
structure.  Note that  the press systems of both rings 
are activated.

The  displacement  of  the  robot  along  a  straight 
structure take a sequence of five steps, figure 7: 

1. Put off the press system of the final effector (the 
upper ring). Figure 7 (a).

2. Put on the displacement of the linear  actuators 
until the top of the career, and the final effector 
moves up. Figure 7 (b).

3. First the press system of the final effector  puts 
on, and then the base one’s puts off. Figure 7 (c).

4. The  linear  actuators  are  contracted  until  the 
minimum career, and the lower base moves up. 
Figure 7 (d).

5. Put on the press system of the lower ring.

This sequence repeats until the desired position is 
obtained. 

 (a)                                   (b)

                 (c)                                   (d) 

Figure  7.  Sequence  of  steps  that  define  the 
displacement of the robot along a straight structure. 
(a) shows the robot with the press system of the base 
off. (b) shows the displacement of the final effector. 
(c) puts the press system of the final effector on and 
the base’s one off. (d) the base moves up.

At the descent of the robot,  the sequence is the 
same but now the final effector is the lower ring and 
vice-versa.

4.3 Sensorial information

If the robot went always along straight structures, 
the former algorithm would be enough. Nevertheless, 
in  general  the  robot  will  climb  through  unknown 
trajectories.  To  make the  robot  able  to  follow any 
trajectory it  would need sensorial  information. This 
information is  provided  by three  ultrasonic  sensors 
allocated  on each  ring and  separated  120º,  as  it  is 
shown in figure 8.

Figure 8. View of the position of the ultrasonic 
sensors on the rings.
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The positions of  the ultrasonic sensors define a 
plane in the space where the measures are taken. The 
sensorial information allows us to know the position 
of the centre of the structure on the plane of the ring. 
The intersection of this plane with the large structure, 
figure 9,  allows us calculate the corrections needed 
for the centring of the ring. The distances measured 
by  the  sensors  (d1,  d2,  d3)  give  the  sufficient 
information to determine the deviation (∆x, ∆y) of the 
centre  of  the  structure  (ce),  in  relation  with  the 
reference system of the ring (X0, Y0).

Figure  9.  Transversal  section  on  the  ring  plane. 
Calculus of the deviation (∆x, ∆y) of the centre 
of  the  structure  in  relation  with the  reference 
system of the ring (X0,Y0).

The position of the sensors is known. Distances di 

(i=1,2,3) give the coordinates of the points 1, 2 and 3. 
These  points  define  a  circle  whose  centre  matches 
with the structure one’s. This way, to determine the 
deviation  (∆x,  ∆y)  is  necessary  to  solve  the  next 
system of equations:

22 )()( yyxxR ii ∆−+∆−=              (5)

where (xi, yi) for i = 1, 2, 3 are the coordinates of the 
points and R is the radius of the structure circle.

4.4 Displacement Algortihm

The algorithm allows the robot to displace in an 
autonomous way. The main purpose of the algorithm 
is to get the final position in the shorter time possible. 
To get this is necessary:

• Divide  the  trajectory  with  intervals  as  much 
larger as possible.

• The  robot  must  go  from one  position to  other 
changing the position and orientation at the same 
time. 

In general way, the algorithm uses the information 
sensorial obtained at one instant of time to correct the 

position   and  orientation  of  the  ring  at  the  later 
instant, and so on. Next, we detail  the steps of the 
algorithm,  figure  10.  The  algorithm starts  with  an 
initial position obtained manually as it was explained 
before.

1. Put off the press system of the final effector.
2. Let  (Xi-1,  Yi-1,  Zi-1)  the reference  system of  the 

final effector ring before the displacement starts. 
With this information, the deviation (∆xi, ∆yi) of 
the  centre  of  the  structure  in  relation  with the 
reference system of the ring is solved, using the 
system of equations (5). 

3. The final effector moves up a distance previously 
fixed  (∆),  in  a  normal  direction  (Zi-1).  At  the 
same time the position of the centre of the ring is 
corrected  using  the  sensorial  information  (∆xi, 
∆yi). This way, the position of the new reference 
system  (Xi,  Yi,  Zi)  centred  on  the  ring, 
corresponds  with  the  position  (∆xi,  ∆yi,  ∆)  in 
relation with the reference system (Xi-1,Yi-1,Zi-1). 
With the coordinates of the new reference system 
and the former one we obtain a vector that allows 
us to correct the orientation. The new orientation 
of the perpendicular of the ring (axis Zi) will be 
aligned  with  this  vector.  To  obtain  the 
orientation  of  the  ring  we  need  to  solve  the 
following cross products:

                   Xi = Yi-1 x Zi Yi = Zi x Xi       (6)

4. Starting from the position and orientation of the 
base  and  the  final  effector,  the  command 
variables  that  activate the displacements of  the 
actuators  are  calculated  using  the  inverse 
kinematics.

5. Steps  2, 3 and 4 are repeated until one of the 
actuators reaches the contour condition. 

6. First  the  press  system of  the  final  effector  is 
putting on, and then the base’s one is putting off. 

7. Steps  2  and  3  are  repeated  but  considering as 
final effector the lower ring.

8. Using the inverse kinematics and starting from 
the position and orientation of the base and the 
final  effector,  the  command  variables  of  the 
actuators are calculated.

9. Steps  7  and  8  are  repeated  until  one  of  the 
actuators reaches the contour condition.

10. The press system of the base ring is putting on.
11. Steps 1-10 are repeated until the robot reach the 

desired position.
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Figure 10. Path planning algorithm.

Considerations

• When solving the inverse kinematics, besides of 
obtaining  the  command  variables  of  the 
actuators, the generalized coordinates vector are 
also obtained, as it was explained in the inverse 
kinematics section. That  way avoids the use of 
the  forward  kinematics  to  get  the  final 
configuration  of  the  robot.  To  test  the  vector 
obtained, we must check that the Jacobean of the 
constraints  vector,  φ,  described  in  (2),  is  rank 
complete.  The  check  of  the  rank  is  made  to 
verify that the command variables can be applied 
to  the actuators  according with the mechanical 
constraints of the robot.  This method implies a 
reduction of the computational cost, avoiding the 
use  of  Newton-Raphson  to  calculate  the 
configuration  of  the  robot  when  we  send  the 
command variables.

• The  contour  condition  indicates  the  maximum 
and  minimum  displacement  allowed  for  the 
linear actuators. This displacement is dependent 
of the curvature radius of the structure. If there is 
neither  autocollision  nor  collision  with  the 
structure, this value could reach the maximum or 
minimum career  of the cylinders.  This value is 
not  a  fixed value,  and  it  could vary according 
with the curvature at each instant.

• The  displacement  of  the  ring   (∆)  is  fixed  in 
function of the curvature radius of the structure. 
Besides,  it  would be possible that this quantity 
varies  along  the  trajectory,  according  with the 
curvature at each moment. 

• To  make  the  robot  comes  back  to  the  initial 
position, it is not necessary to use the sensorial 
information, due to the robot has been storing the 
positions of each base along the trajectory. This 
way, when the robot  comes back to the origin, 

the command variables are calculated using the 
inverse kinematics. 

5 SIMULATIONS.

We  have  developed  computational  tools  in 
Matlab  that  allow us  to  test  the  former  algorithm 
proposed. Using these tools we can define different 
kinds of structures, different displacement of ring ∆, 
and  many other  variables.  Besides,  these  tools  can 
visualise the functioning of the algorithm. Figure 11 
show several instants of the simulation of the robot 
moving along a structure using this algorithm.

Figure 11.  Different  views of the simulation of the 
robot moving along a structure.

To have an idea of the computational cost of the 
path planning algorithm, figure 12 shows the number 
of  float  operations  required  at  each  interval  of 
displacement  that  the  robot  makes.  Note  that  the 
number of float operations is nearly equal, so that the 
computational  cost  will  be  greater  as  much as  the 
number of intervals to cover a trajectory grows. 

Figure 12. Number of float operations required.
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6 CONCLUSIONS

This article  presents a  navigation algorithm that 
allows the parallel  climbing robot  to displace itself 
along an unknown trajectory.  The parallel  structure 
gives  the  robot  a  high  stiffness  and  a  high  load 
capacity, useful for maintenance and inspection tasks. 

The main advantage of the proposed algorithm is 
that  it  is  not  necessary  to  solve  the  forward 
kinematics to get the final configuration of the robot 
because we obtain it from the inverse kinematics, and 
we  only  check  if  it  is  in  accordance  with  the 
mechanical  constraints.  This  implies  a  reduction of 
computational costs.

Nowadays we are working in the implementation 
of the algorithm inside the control architecture so that 
we can make real experiments to verify the results of 
the simulations.
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