
USING ACTUAL INDUSTRIAL ROBOT MANIPULATORS WITH

CONSTRUCTION TASKS

J. Norberto Pires

Mechanical Engineering Department, University of Coimbra

3030 Coimbra, Portugal, norberto@robotics.dem.uc.pt

Abstract
Actual industrial robot manipulators are sophisticated machines that work essentially as
position and motion controllers. They have sufficiently powerful programming
environments and good communication devices that, considering also their ability to
perform human-like tasks, make them a typical case of flexible manufacturing equipment.
Force control can also be used if no more than passive and/or indirect force control is
required. This is roughly the actual state-of-the-art of industrial robot manipulators. Is this
useful or interesting for construction tasks? In this paper we review the main characteristics
of actual manipulators, in a way to show that technically the actual state-of-the-art is
sufficient to cope with the requirements of many of the construction tasks. Beside of that,
and using a typical industrial manipulator, we present a software interface that can be used
to program, monitor and control those tasks. The main applications of the presented
software are with off-site construction tasks, although on-site tasks can also benefit from
using it. Off-site tasks include manufacturing prefabricated panels, adding ceramic covers
to other prefabricated panels, polishing, painting, window assembly, etc.

Keywords: Industrial Robotics, Robots for construction, software, man-machine interfaces.

1. Introduction

Robot Technology evolved enormously in the last
25 years [1,2], although only a few selected
technologies are available on commercial industrial
robots. Many other technologies, currently common
on research and development environments, didn’t
reach the market yet mainly due to the conservative
nature of the robot industry. Things like force
control, visual servoing, flexible robots, advanced
programming leading to intelligent and autonomous
robots, etc, are still not available for the general user.
Actual robot state of the art, if we take commercially
available robots, present us with excellent position
controlled machines, with interesting programming
environments and several interfaces with other
machines (IO, serial communication, fieldbuses,
TCP/IP connections, etc). How did we get this far,
and what should be done to go further is part of the
subject of this paper. Also, what is now possible with
commercial robots and what can be expected in the
next few years, considering in particular civil
construction tasks will be considered. Robotics is not
a science of your century or of the near future, as is
commonly mentioned. In fact, this idea of designing
and building robots (capable of human like tasks and

obedients) is not new and was part of the thoughts of
many of the great thinkers of our common history.
Briefly, the first works on robotics may be traced
back until 270 BC, in the ancient Greece, to the water
clocks with mobile figures designed by the Civil
Engineer Ctesibius [1]. His work was followed by
Phylo of Byzantium (author of the marvellous book
“Mechanical Collection”, 200 BC), Hero of
Alexandria (85 BC) and Marcus Vitruvius (25 BC)
[1]. Several hundred years later, the Arabians
documented (the three Banu Musa working for the
Kalifa of Baghdad, 786-833 AC) and developed
(Badías-Zaman Isma’Il bin ar-Razzaz al-Jazari in the
book “The science of the Ingenious Devices”, 1150-
1220 AC) the Greek designs to be used on their own
creations. Leonardo Da Vinci also spent some time
on robotics, when he was working for the Sforza
family. By the same time he painted “The last
supper”, he was also involved with building the
“Salle delle Asse” of the Sforza Castle, where he
planned to put a human-like robot in the form of a
XV century knight [1,3,4]. Somehow, the plans and
drawings were never found, although some pages of
his famous book “Codex Atlanticus” are missing
precisely in the point where it seams that he was
preparing the robot project. But Leonard didn’t have

120_TB3.doc- 1 –

at the time the sufficient conditions to develop
efficient robots: namely a permanent power source
and the possibility to build parts with high precision.
Nicola Tesla did another outstanding contribution to
robotics, in the turn to our century. He was thinking
about automatons and how he could command them
or “embody” intelligence on them. At the time, there
was a German scientist (Hertz) claiming that an
electromagnetic excitation generates radiation of the
same type that can be detected far from the
excitation. Tesla thought about using this to
command an automaton: the term “tele-automatics”
appeared. In its own words [5]:
“… But this element I could easily embody in it by
conveying to it my own intelligence, my own
understanding. So this invention was evolved, and so
a new art came into existence, for which the name
“teleautomatics” has been suggested, which means
the art of controlling movements and operations of
distant automatons.”
Modern robotics started in the late fifties with the
Goertz Master-Slave robots [6], designed to handle
dangerous materials. After that the evolution was
very fast, mainly after around 1970, when the first
industrial robots appeared. In this paper we’ll focus
mainly on industrial robot manipulators since those
are the ones presenting good potentialities for
construction applications. Also, they’ve been used
intensively in several industrial applications, which
further enhanced their capabilities and flexibility as a
way to meet the requirements of today manufacturing
platforms. For those types of robots, we’ll briefly
present in section 2 a brief state of the art. Section 3
presents a software environment designed for
industrial and automation equipment. The idea is to
show applicability to the present case of Civil
Engineering tasks. Finally, some conclusions are
drawn in section 4.

2. State of the art

Industrial robot manipulators are currently
position/motion-controlled machines. With them
users can define a set of positions, define trajectories
and the motion parameters between those positions,
and execute them continuously. Basically, this is all
that they can do. Robot controllers offer additionally
PLC like capabilities to control IO signals (digital
and analog), several communication interfaces
(profibus, can, Ethernet, serial channels, etc, are
common) and a programming or scripting language
to access all this resources. Actual robot
manipulators main characteristics are resumed in
table I.

Table I – Main characteristics of actual robot
manipulators

Repeatability up to 0.03 mm (0.1 mm is
common)

Velocity up to 5 m/s
Acceleration up to around 25 m/s2
Payload from 2-3 kg up to 350 kg
Weight/payload around 30-40
Axis 6
Communications Profibus, Can, Ethernet and

serial channels (RS 232, 485)
IO capabilities PLC like capabilities to handle

digital and analog IO.

In conclusion, actual robot manipulators are excellent
motion controllers, with sufficient but somehow
limited programming environments and closed
controllers (even to the advanced user).
In the near future, robots must evolve to reduce
weight leading to flexible robots. Also, some effort
should be done to improve actuator efficiency.
Intelligent sensors, including data processing,
filtering and packaging should also be improved to
get more distributed resources in a robot. But the
main advances must be done at the system controller
level. Robots are still very complex machines to use
and program, i.e., although they are the ultimate
example of a flexible machine, its flexibility is only
barely used. And that is so due to the fact that robot
controllers are closed systems, using different types
of hardware and operating systems, different
programming languages, complex developing
processes requiring too many details, very deficient
high level programming and workstation connection,
etc. Robots will give a “quantum leap” when
standardization finally arrives to the robotics
industry. The adoption of standards, both on
hardware and software, enabling user access to robot
controllers and the introduction of new features will
certainly accelerate steps further.
One of the required steps is force control [11-14].
When robots interact with parts and surfaces, and the
contact forces are important to successfully
accomplish the task goal, then the robot needs some
efficient way to actively control those contact forces.
That also means adding force/torque sensors and/or
tactile sensors, which are commonly available from
several manufacturers. Visual servoing, using CCD
cameras, laser cameras or other visual sensors, is also
fundamental for parts handling but also for complex
tasks like robotic welding.
This is industrial robotics today. Is it sufficient for
construction tasks? In the next section we give an
example of a software environment developed at our
laboratory to be used with actual industrial robots. By
using it, and showing its capabilities, we’ll
demonstrate that many of them can be used with
construction tasks, namely off-site construction tasks.

120_TB3.doc- 2 –

3. Exploring an Industrial Robot

The key factor about industrial robots is its
flexibility, i.e., the possibility to perform different
tasks just by reprogramming and retooling. If we take
actual market conditions (leading to small batch
manufacturing of products with increasing
complexity and parts density), it is very easy to
understand why robots are so important for
manufacturing platforms. They represent, when
integrated into Flexible Manufacturing Systems
(FMS), the possibility of a fast response to market
needs and product enhancement. Nevertheless, if we
consider all the possible equipments of a FMS
system, with a lot of different robots, control
systems, PLC, etc, then we easily conclude that their
potential flexibility is only barely used. Any change,
even if small, will require a specialist to handle it.
And that is generally not easily available or very
expensive. If robots are to be used as a general tool
with complex tasks into flexible environments (like
constructions tasks), then they need to improve their
programming environments (leading to distributed
and object oriented high level programming), remote
access capabilities facilitating integration with other
equipments, etc, leading to machines more easier to
use by regular operators [9,10,15]. This means, more
intelligent robots capable of receiving complex
requests from user computers, execute them and
delivering results. Also, means connectivity with
regular computers in a way to improve human-
machine interfaces.
Basically, when we want to use some kind of
equipment from a computer we need to write code
and define data structures to handle all its
functionality. We can then pack the software into
libraries, which are not very easy to distribute being
language dependant, or build a software control using
one of the several standard architectures available
(preferably ActiveX or JAVA [9]). Using a software
control means implementing methods and data
structures that hide from the user all the tricky parts
about how to have things done with some equipment,
focusing only on using its functions in a easy way.
Beside that, those components are easily integrated
into new projects built with programming tools that
can act as containers of that type of software
controls, i.e., they can be added to new projects in a
"visual" way. We built software components to
handle industrial robots (any from ABB),
force/torque sensors (any from JR3 Inc.), a CCD
camera (VS710 from Siemens), and other equipment.
With them users can build applications exploring
their functionality using tools like: any Microsoft
Visual Studio Tool, Matlab from Mathworks,
LabView from National Instruments, any DDE client
tool and any ActiveX container tool [9] (for example,
any Microsoft Office Tool can be used to access
robot services; we’ve done that to recollect

production information directly into Excel
spreadsheets).
In this paper, we choose to demonstrate using
Matlab, since it is a well-known package and is
basically an interpreted language, which suits our
demonstration purposes. The interested reader can
find more application details in [9,10], or in our web
site http://www.dem.uc.pt/norberto/. Components can
be included in Matlab as MEX files. We built a
toolbox named MATROBCOM [10] that includes
modules for all the equipment mentioned above. One
of the modules uses Remote Procedure Calls (RPC)
services available from ABB robots, enabling users
to control a robot from the PC. In fact this module
integrates an ActiveX control built with the same
purpose [10]. Table II lists the functions available on
that module.

Table II - Functions available in the MATABBS4
module.

Function Brief Description
open Opens a communication line with a

robot (RPC client)
close Closes a communication line.
motor_on Go to Run State
motor_off Go to Standby State
prog_stop Stop running program
prog_run Start loaded program
prog_load Load named program
prog_del Delete loaded program
prog_set_mode Set program mode
prog_get_mode Read actual program mode
prog_prep Prepare Program to Run (Program

Counter to begin)
pgmstate Get Program Controller State
ctlstate Get Controller State
oprstate Get Operational State
sysstate Get System State
ctlvers Get Controller Version
ctlid Get Controller ID
robpos Get current robot position
read_xxxx Read variable of type xxxx (there

are calls for each type of variable
defined in RAPID)

read_xdata Read user defined variables
write_xxx Write variable of type xxxx (there

are calls for each type of variable
defined in RAPID)

write_xdata Write user defined variables
digin Read digital input
digout Set digital output
anain Read analog input
anaout Set analog output

The robot may be connected to the computer using a
serial port or preferably an ethernet port, both using
TCP/IP protocols (fig.1). If a local area network is
available, several users/computers may be connected
to the robot at the same time (with a line or channel

120_TB3.doc- 3 –

http://www.dem.uc.pt/norberto/

open), and then MATABBS4 keeps track of actual
open lines/channels. Opening a line means starting a
client connection to the RPC servers running on the
robot.
Suppose that we have a robot program (written in
RAPID [8], a robot programming language from
ABB Robotics) running, which is switched by a
variable named, let say, 'decision'. The basic structure
of the program would be something like (using a C-
type definition),

while never_end;
switch decision
 case 1: call routine_1; break;
 case 2: call routine_2; break;
 …
 case n: call routine_n; break;
end_switch;

end_while;
Then if we define complex routines to meet our
special needs, it is very easy to write scripts to call a
sequence of them [9]. In Matlab, that would be:
>> line = matabbs4 ('open', 'babylon', 'reserved')
If program not yet running,
>> matabbs4 ('program_load', 'flp1:\example.prg',
line)
>> matabbs4 ('program_run', line)
Call routine_1,
>> matabbs4 ('write_num', 'decision', 1, line)
Note: When task is complete an RPC call is made to
the PC with that information (event calls). We can
check that just by reading if the variable “decision”
reached its default value.

Robot
Control
System

Requests

Answers

Spontaneous
MessagesJoystick

PC/WinNT

Force/torque Data

F/T Sensor

Motor Signals

Joint Positions

Fig.1 – Robot and sensor connections.

Acting on IO,
>> matabbs4 ('digout', 7, 1, line)
>> matabbs4 ('anaout', 1, 236, line)
Call routine_2,
>> matabbs4 ('write_num', 'decision', 2, line)
For example, suppose that routine_3 moves the robot
from actual position to another one defined by a
position variable named 'new_pos' of the type
robtarget. Routine_1 should then be something like,

PROC routine_1
 MoveJ to new_pos;
 decision = -1;
ENDPROC

We can then send the robot to some position just by
commanding,

>> matabbs4 ('write_robtarget', 'new_pos',
new_position[1,:], line)
>> matabbs4 ('write_num', 'decision', 3, line)
The motion parameters (velocity, acceleration and
positioning precision) can also be set before issuing
the call to routine_3. That was not done just for
simplicity.
Now, since the majority of the construction tasks
require mainly positioning and IO control, these
demonstrations show the possibilities we can have
just by being able to control the robot from a PC,
where the civil engineer tools are. By tools we mean
CAD and simulation tools, where parts and things are
designed. This makes the above-mentioned software
useful for a vast majority of off-site construction
tasks [16]. We’ve been using this software on several
industrial tasks requiring databases and PC software
to define the task completely, or that require
monitoring of the production site [17]. Tele-operation
is also possible, since new positions can be fed to the
robot at high rates (a new position can be
commanded in ~15 ms). In fact, we built a small C++
application that enable users to use any game joystick
to jog the robot from any computer on the network
(fig.2). We are now experiencing with force feedback
joysticks (Microsoft Sidewinder Force Feedback
Pro). That will integrate information from a
force/torque sensor mounted on the tip of the robot.
Finally, the all collection of tools is presented as
ActiveX controls which means that they can be used
with web applications, i.e., using the robot from the
web as if we were on-site.

4. Conclusion

In this paper, actual state of the art of robot
technology was briefly presented and discussed.
Needs for future robots were also briefly presented
and forecasted. Civil Engineering is considered to be
an area where actual robotic technology can be
applied with success in the improvement of actual
construction processes. Robots are currently accurate
and powerful for those types of tasks. It is only a
question of integration and adaptation to construction
environments. Off-site construction tasks are the ones
that can easily benefit from actual robots.
Finally, we demonstrated how to include actual
robots into distributed environments, and also how
important is to integrate robots into our computer
environments. Robots should be used from our
normal working tools, and should be simple to do
that. That means, high-level software, standardization
and integration to standard environments, i.e., object-
oriented software, adoption of standard technologies
both for hardware and software, and the effort to
integrate them into our working tools. We
demonstrated that using an object oriented language
(ActiveX), one control-engineering tool (Matlab),
under a very common operating system (Microsoft
win32 operating systems: Windows 98/NT/2000).

120_TB3.doc- 4 –

Fig.2 – Joystick demonstration application and
matlab interface.

5. References

[1] M. Rosheim, “Robot Evolution: The
Development of Anthrobots”, New York: John
Willey & Sons, 1994.

[2] L. Westerlund, “The extended arm of man: a
history of the industrial robot”, ISBN: 91 7736
4676-8, Sweden, 2000.

[3] M. Rosheim, “In the Footsteps of Leonardo”,
IEEE Robotics and Automation Magazine, June
1997.

[4] C. Pedrettii, “Leonardo Architect”, New
York:Rizzoli International Publications, 1981.

[5] N. Tesla, “My Inventions: Autobiography of
Nicola Tesla”, Willinston, VT: Hart Brothers,
1983.

[6] R.C. Goertz, “Fundamentals of General Purpose
Remote Manipulators”, Nucleonics - Vol. 10,
Novembro de 1952.

[7] United Nations e International Federation of
Robots, “World Industrial Robots 1996:
Statistics and Forecasts”, New York: ONU,
1996.

[8] ABB Rapid Users Manual, ABB Flexible
Automation, 1997.

[9] J.N. Pires, J.M.G. Sá da Costa, "Object-Oriented
and Distributed Approach for Programming
Robotic Manufacturing Cells", IFAC Journal
Robotics and Computer Integrated
Manufacturing, Volume 16, Number 1, pp. 29-
42, March 2000.

[10] J.N. Pires, “Using Matlab to Interface Industrial
Robotic & Automation Equipment” Accepted to
IEEE Robotics and Automation Magazine, to
appear, (expected September 2000).

[11] JN Pires, “Force Control on Industrial Robotics”,

Ph.D. Thesis, University of Coimbra, June,
1999.

[12] B. Siciliano, L. Villani, Robot Force Control,
Kluwer Academic Publishers International
Series in Engineering and Computer Science,
Boston, MA, 1999.

[13] J. De Schutter, H. Bruyninckx and M. Spong,
Force control: a bird’s eye, in ‘Proceedings of
IEEE CSS/RAS International Workshop on
Control problems in robotics and Automation:
Future directions’, San Diego, USA, 1997.

[14] R. Volpe and P. Khosla, “A theoretical and
Experimental Investigation of Explicit Force
Control Strategies for Manipulators”, IEEE
Transactions on Automatic Control,
1993;38(11):1634-1650.

[15] K. Nilsson, “Industrial Robot Programming”,
Ph.D. Thesis, Department of Automatic Control,
Lund Institute of Technology, May of 1996.

[16] L.F. Penin et all, “Robotized Spraying of
Prefabricated Panels”, IEEE Robotics and
Automation Magazine, pp.18-28, September
1998.

[17] JN Pires, “Programming Industrial Robotic and
Automation Equipment”, Industrial Robot, An
International Journal, MCB University Press, to
appear, (expected July 2000).

120_TB3.doc- 5 –

RPC Server Robot

 Matlab

RPC Sync. Call
Events

D
D

E

	USING ACTUAL INDUSTRIAL ROBOT MANIPULATORS WITH CONSTRUCTION TASKS
	J. Norberto Pires
	Abstract
	1. Introduction
	Repeatability

