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Abstract: In this paper, a new surface-based modeling algorithm is presented to construct 3D 
models  of  structural  objects  from  2D  slices,  which  contain  contours  obtained  from 
tomographic  images.  The  main  objective  of  this  method  is  to  produce  the  most  precise 
possible model for branching bodies taking into consideration that the slices might be far 
apart  in reality.  Boolean  operations  will  be used as the technique to solve the branching 
problem.  The proposed framework is not pixel-based and a complete 3D solid model will be 
created.  Examples  show  that  the  proposed  approach  is  robust  and  superior  to  existing 
methods for this purpose.
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1. INTRODUCTION

    Reconstructing the boundary of a solid object from 
a series of parallel planar cross-sections has attracted 
much  attention  during  the  past  two  decades.  The 
original  motivation  comes  from  medical  imaging 
applications  where  cross-sections  of  human organs 
are  obtained  by  CT,  ultrasound,  or  NMR.  These 
cross-sections  are  the  basis  for  interpolating  the 
boundary of the organ.  The interpolated object  can 
then be displayed  in graphics  applications,  or even 
manufactured  by  numerically  controlled  (NC) 
machining. This technique has been utilized in many 
applications  in  engineering,  geology,  and  military, 
such  as  the  nondestructive  digitization  of  objects, 
reconstruction  of  the  three-dimensional  model  of 
terrain from topographic elevation contours, etc. 

    However,  until  now, few people use it to solve 
problems  in  civil  engineering  where  visualizing 
underground objects  is  a  very important  topic.  For 
example,  if  a  structural  engineer  is  designing  the 
foundation of a building in certain location, general 
geology  of  the  site  should  be  known.  Traditional 
method to obtain the information is to check the site 
by drilling holes at  only a few selected points. An 
easier  and more efficient  way would be to use the 
tomographic techniques. 3D models of the site can be 
formed  from  the  recorded  signals  obtained  from 
computer  tomography.  Thus,  the  soil  layers  and 
underground  water  level  can  be  shown  more 

precisely  than  the  traditional  engineering  report. 
With  this  model,  any  faults,  quarries,  springs, 
swallow  holes,  mines  or  shaft,  or  other  features, 
which will have a bearing on the foundation works, 
can be illustrated clearly. 

    While  the construction of 3D models  from 2D 
slices is often to create surfaces that can be displayed 
and interpreted visually,  it also serves as a stage in 
the automatic analysis of the 3D shape. For example, 
models of underground buildings can be constructed 
from  tomography  images,  either  to  assist  in  the 
comprehension  of  the  structure  of  the  object  or  to 
facilitate  its  automatic  analysis,  especially  for  the 
finite  element  analysis.  When  constructing  models 
for further analysis, the performance of the algorithm 
is more important than the visual quality. So long as 
the shape is not distorted,  speed of execution is an 
important issue.

    The  objective  of  this  paper  is  to  propose  an 
economical  approach  for  implementing  such  a 
scheme. The pixel-based methods are not suitable for 
our  purpose  because  they  tend  to  require  a  lot  of 
processor time and memory, and give a surface that, 
while visually pleasing, exceeds the demands of the 
application and the quality of the original data.

    There is a wealth of previous work in the area of 
3D  reconstruction  from  2D  slices.  Most  of  the 
methods  can  be  classified  into  two  categories  [7]. 
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One is the volume-based method, such as ray-casting 
method, integration method, splatting methods,  and 
V-buffer rendering method. The other is the surface-
based  method,  which  includes  three  fundamental 
approaches:  contour-connecting  method,  opaque 
cube  method  [11]  and  marching  cube  method 
[5,6,14]. They typically fit surface primitives such as 
polygons,  usually  triangles,  or  patches  to  constant-
value contour surfaces  in volume dataset.  Volume-
based methods have been discarded here.  They are 
popular in the graphic community, and produce very 
nice  images.  However,  in  modeling  structural 
objects, the improvement in the visual quality does 
not justify the high coast in execution time and the 
computer storage space.  

    Contour-connecting algorithm typically addresses 
three different aspects of the construction problems, 
known  as  correspondence  problem,  tiling  problem, 
and branching problem (Fig. 1). Most of the previous 
contour-connecting  [8,9,12]  approaches  ignore  the 
case of having a branching body, in which a single 
contour  in  one  slice  corresponds  to  two  or  more 
contours in the next; others explain how to deal with 
branching  bodies,  but  their  algorithm  have  several 
other  limitations.  Lin  et  al.  [13]  model  branching 
regions by interpolating many intermediate contours. 
This method generates a smooth surface at the cost of 
a large number of triangles.   Christansen et al. [4], 
Shantz [16], and Shinagawa et al. [17] suggested to 
form composite contours, adding fabricated vertices 
between  the adjacent  contours  to  model the saddle 
surface implied by the contours. Their scheme is not 
adequate  when the  contours  have  awkward  sharps. 
There  are  situations  where  more  than  one 
intermediate  node  is  required,  and  manual 
intervention  is  suggested.  Meyers  [15]  presented  a 
method of triangulating ‘canyons’ without automatic 
locating  them.  Because  of  the  horizontal  triangle 
problem associated  with this  approach,  feeding the 
triangulation mesh into a surface-fitting program to 
regenerate the surface is necessary. 

    Another branching algorithm, proposed by Ekoule 
[6],  created  an  interpolated  contour  when  the 
branching is detected, which is triangulated with the 
source  contour  and  all  destination  contours.  The 
scheme also used convex hull, and is relatively costly 
and  slow  for  similar  results.  Barequet  [2]  first 
matched  and  tiled  similar  portions  between 
corresponding contours.  Then, the clefts, which are 
the  polygons  formed  by  the  untiled  portions,  are 
triangulated with (a variant of) a 3D minimum area 
triangulation technique. If the X-Y projections of the 
clefts  are  nested,  bridges  are  added  to  break  the 
nesting.  This  algorithm  may  produce  horizontal 
triangles  when  a  feature  in  one  slice  does  not 
resemble  the  features  in  the  other  slice.  Bajaj  [1] 
improved the method suggested by Barequet [2] by 
triangulating the untiled region with its medial axis, 
which is projected to the middle height of the two 
adjacent slices.  In practice,  it is not necessarily the 

case.  Boisonnat  [3]  constructed  the  Delaunay 
triangulation  for  each  slice  by  projecting  one 
triangulation  onto  the  other,  and  obtaining  a 
collection of the tetrahedral, aiming to maximize the 
sum  of  their  volumes.  Geiger  [10]  improved 
Boissonnat’s  method  so  that  it  can  handle 
complicated  branching  and  dissimilar  contours.  In 
this approach, all  the points were triangulated even 
the ones at the same slice. This is considered one of 
the  drawbacks  of  the  Delaunay  triangulation. 
Another  drawback  is  the  assumption  that  the 
branching points is located at the lower slice, which 
might not be true in reality. 

    Our  approach,  as  most  previous  surface-based 
methods,  addresses  three  fundamental  problems 
separately.  First,  the  correspondence  is  judged 
among contours with the same orientation. Then, the 
one-to-one body between each pair of corresponding 
contours  is  constructed.  During  the  previous  two 
steps, a flag of either ‘1’ or ‘-1’ will be set for each 
body to indicate whether the body is a real one or a 
hole.   Finally,  all  the  bodies  flagged  by  ‘1’  are 
united, and holes flagged by ‘-1’ are subtracted. By 
using  Boolean  operations  we  solve  the  branching 
problem without adding bridges, triangulating untiled 
regions,  or  inserting  interpolated  slices.  Many 
experimental  results  will  be  shown  to  demonstrate 
the  efficiency,  accuracy,  and  robustness  of  this 
proposed approach. 

    This paper is organized in the following fashion. A 
more precise definition of the research topic will be 
given in section2. Section 3 describes the modeling 
procedure in a detailed way. Section 4 presents some 
experimental  results.  Finally,  the  advantages  and 
future work will be discussed in Section 5.

2. STATEMENT OF THE PROBLEM

    This method can accept the input of either image 
slices  or  contour  data.  If  the  input  data  are  image 
slices,  they  can  be  changed  into  contour  data  by 
using 2D marching cube algorithm [6]. In practice, 
we use ‘Scion Image’ to perform the job. Here we 
assume that the input is the contour data.

Input:

    A series of planar slices, which are parallel to the 
XY-plane, and lie at height Z = Z1 , Z 2 …Z n . Each 
slice consists of a list of closed and simple polygonal 
contours, which divide the slicing plane into a solid 
region  and  a  void  region.  They  represent  the 
boundaries  between  “material”  and  “nonmaterial” 
areas. These contours do not intersect each other, but 
a contour may be enclosed in any number of other 
contours,  which  themselves  may  enclose  other 
contours. The contours in a slice do not necessarily 
come from the same object,  and an object  may be 
represented by more than one contour in a slice. Each 
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contour is  given  as a  circular  list  of  vertices,  each 
specified by its (x, y) coordinates.  

Output:

    A polyhedral  B-Rep solid  model  whose cross-
sections coincide with the input slices.

    Constructing  a  polyhedron  between  a  pair  of 
adjacent slices is independent of that of other pairs of 
slices.  Therefore,  a  natural  simplification  of  the 
modeling problem, also taken in most earlier works, 
is to consider only a single pair of successive parallel 
slices (S1  and S 2 ) and to construct a model within 
the layer delimited by the planes of the slices, which 
interpolates  between  the  given  slices.  The 
concatenation of these models will give a solution to 
the full problem.

    Because only two adjacent slices are considered, 
contours can be classified into uContours (contours 
in the upper slice S 2 ) and bContours (contours in the 

lower slice S1 ) without using the coordinate value of 
the z-axis.

3. MODELING PROCEDURE

3.1 Construction Criteria

    The  problem  of  shape  reconstruction  is 
underconstrained, which implies that there are many 
feasible  solutions.  Some reasonable correspondence 
and  tiling  rules  are  imposed  to  generate  the  most 
likely  object  which  satisfies  two  basically 
requirements:  first,  the reconstructed surface on the 
slice  should  coincide  with  the  original  contours; 
second,  the reconstructed  surface and solid regions 
form  closed  surfaces  of  polyhedral.  Before 
presenting  the  construction  criteria,  some  useful 
definitions are described.

Definition 1. Augmented contours: New vertices are 
added  in  both  contours  at  those  points  where  the 
projection  of  that  contour  would  cross  another 
contour. 

    A single polygon divides the slice plane into two 
parts: interior (material) and exterior (void). But in 
realistic cases, one contour might be inside another 
contour. In order to reflect these complex cases, the 
concept  of  the  orientation  of  one  contour  is 
introduced. 

Definition  2. The  orientation  of  one  contour: 
Walking  along  the  orientation  of  one  contour,  the 
solid region is on its  left  side.  Therefore,  the solid 
region  is  inside  of  a  CCW  (counterclockwise) 
contour and is outside of a CW (clockwise) contour.

Definition 3. Corresponding contours: If there is at 

least one vertex of C 1  located inside the projection 

of C 2 , or at least one vertex of C 2 located inside C1 , 

and C1 , C 2 have the same contour orientation, then 

C1 , C 2 are said to be corresponding contours.

Definition  4. Legal  slice  chord:  All  slice  chords 
satisfy criterion 1 to criterion 3 described later  are 
called legal slice chords.
 
Definition 5. OTV (optimal tiling vertex): V2 in one 
slice is the OTV of V1 in another slice (V 2  = OTV 

(V 1 )),  if  V1V2  is  the shortest  among all  legal  slice 

chords incident with V1 .  

Criterion 1. Any overlapping vertices must be tiled.

Criterion 2. The slice chord T connecting vertices V

1  and V 2  can not intersect with any of the contours 
in both slices. 

Criterion 3. Assume that C1  (a CCW contour) is a 

corresponding contour of C 2  (a CCW contour too). 

If V '
2  is outside of C1 , T’ will not be in the side of 

V2 (Fig. 2.a.) If V '
2  is inside C1 , T’ will be in the left 

side of V2 (Fig. 2.b.) If V2 is an overlapping vertex, T’ 

will  not  be in  the  right  side  or  left  of  V2 and  V2
’ 

simultaneously (Fig. 2.c.)  

3.2 Construction procedure

Step1: Data Representation and Storage

    A C-style  structure is  defined to represent  and 
store  the  information  about  one  contour.  Two 
information arrays  are used to store the orientation 
and vertex coordinates of the contours in the lower 
slice  and  the  upper  slice,  respectively.  The 
information is read into these arrays  from the input 
data  files.  Three  relationship  arrays  are  used  to 
represent  the relations among contours in the same 
slice or two adjacent slices, and they can have four 
different values, each represent a relation case.

Step2: Create Augmented Contours

    Using  the  augmented  contours  instead  of  the 
original  input contours allows the tiling of  contour 
segments  whose  projections  cross  each  other  and 
grantees that Criterion 1 is satisfied.
 
    If the projection of one contour segment crosses 
another contour segment at V '

1 , V '
1  is added to both 

C1  and  C 2  as  an  overlapping  vertex.  If  the 
intersection of one contour segment projection with 
another contour segment is a one-line segment, new 
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vertices are inserted so that the overlapping part is a 
contour segment in both slices. 

Step 3: Decide Correspondence Between Contours

    We judge correspondence only between contours 
with  the  same  orientation.  Because  of  this,  nested 
contours  will  be  developed  as  bodies  may include 
holes such as the tunnel structures.  

    From definition 3 it can be seen that deciding the 
correspondence  between any two adjacent  contours 
is to examine the number of vertices in one contour 
located  inside  the  other  contour.  The  algorithm 
presented in [18] is used to judge if the point is inside 
of the polygon or outside of it. 

Step4,  Construct  Tiling  Between  Each  Pair  of  
Corresponding Contours.

    If there is one contour in one slice corresponding 
to more than one contour in another slice, tile them 
respectively.  Thus many one-to-one objects will be 
created. If the body is constructed between two CCW 
contours,  it  is  flagged  ‘1’;  if  between  two  CW 
contours, it is flagged ‘-1’. 

    First, the OTV is searched for each vertex of any 
pair of corresponding contours based on the distance. 
Starting from the closest vertex on the adjacent slice 
until one satisfies the definition of OTV is found. An 
OTV table is formed to store the OTV pairs. Next, 
forming  tiling  triangles  between  corresponding 
contours  based  on  the  OTV  table.  Identify  the 
starting  slice  chord  Q i P j  by  searching  the  OTV 
table. This will then be used as the first edge when 
developing the tiling triangles. 

Tiling  triangles  can  be  constructed  in  two  passes. 
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    During the second pass, tiles are formed as many 
as  possible.  The  following  application  of  Boolean 
operations will decrease untiled points dramatically. 
Therefore, untiled vertices formed by this method are 
much  less  than  that  formed  by  other  methods. 
Actually,  in  our  experiments,  even  in  the  most 
extreme  cases,  there  are  very  few untiled vertices. 
So,  it  should  be  acceptable  to  discard  the  untiled 
vertices.

 Step  5:  Applying  Boolean  Operations  to  Get  the  
Intersection Curves

    After above four steps, many one-to-one bodies 
are formed. Unite all the bodies flagged by ‘1’ and 
subtract  bodies flagged by ‘-1’ to achieve the final 
body. Complicate branching bodies with holes can be 
constructed by the application of Boolean operations.

4. EXPERMINTAL RESULTS

    The  algorithm has  been  implemented  in  C++. 
Many  experimental  results  on  various  complex 
examples are presented in this section.

    In Fig. 3, a very typical branching case is used to 
illustrate the construction procedure.  Fig. 4 is a one-
to-three branching problem. From the results we can 
see  the  more  branches  a  body  contains  the  more 
precise  model  we  can  construct.  Compare  with 
previous methods, we can obtain very good models 
of branching bodies without adding bridges, inserting 
interpolate slices, or triangulate untiled regions. 

    Most previous algorithms ignore the nest problem, 
in which a contour may be enclosed other contours or 
enclose other contours.  The building showed in Fig. 
5  is  an  example  of  nest  problem.  Because  the 
correspondence is judged between CW contours and 
CCW contours, respectively, our algorithm can deal 
with such cases perfectly. 

    Fig. 6 shows a very complicated branching body 
containing  a  hole.  The  corresponding  contours  are 
extremely  distorted.  Even  in  this  case,  by  using 
Boolean  operation and  our correspondence  judging 
rules,  the  branching  and  the  hole  are  formed 
successfully. 

5. CONCLUSIONS AND FUTUR WORK

    We have described a framework for reconstructing 
models  from  sets  of  contours  that  is  suitable  for 
constructing  models  of  structural  objects,  in  which 
nest  problem  is  very  common,  and  sometimes 
constructing branching body is necessary.  We have 
extended  previous  works  by  allowing  for  complex 
branching and nest to occur. 

    The key idea is to separate the complicated many-
to-many problem into several  one-to-one problems, 
which are already handled well by existing methods. 
Unlike  most  of  the  existing  contour-connecting 
methods,  Boolean  operations  are  introduced  as  the 
fundamental tool. A branching body is achieved by 
finding the intersection curves among all constructed 
one-to-one  bodies.  The  use  of  Boolean  operations 
combined  with  our  tiling  scheme  dramatically 
reduces  the  amount  of  untiled  points  and  the 
approach is robust.
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    This proposed framework judges correspondence 
between  CCW  contours  and  CW  contours 
respectively,  and  two  different  kinds  of  Boolean 
operations  are  applied  based  on  the  orientation  of 
contours. Therefore, it is capable of dealing with the 
nested  contour  problems  very  well.  Most  of  the 
previous methods had ignored the problem.

    The results show that our technique reconstructs 
the  boundary  of  various  objects  in  an  intuitively 
appealing manner. The resulting 3D models are more 
than  adequate  even  in  extreme  cases  of  tiling 
between two seeming totally different slices.

    Till now, our experiments are all simulated ones. 
In the future, we plan to test our algorithm with some 
real  data  collected from practical  civil  construction 
applications.
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Branching Problem

Correspondence
Problem

Tiling Problem

1
1C 2

1C

1
2C

Fig. 1  Statement of correspondence problem, tiling problem, and branching problem.

(a) (b) (c)
Fig. 2  Three cases of legal slice chord.

(a) (b) (c) (d)
Fig. 3  A one-to-two branching problem: (a) The top view of lower and upper slice; (b) and (c) Two one-to-one bodies 
constructed between two pair of corresponding contours respectively; (d) The result with hidden lines removed.

(a) (b) (c)
Fig. 4  A one-to-three branching problem: (a) The top view of lower and upper slice; (b) The result with hidden lines 
removed; (c) The shaded view of the result.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)
Fig. 5  A simulate building:: (a) (b) (c) Three cross sections of the building.; (d) shaded view of the wall constructed 
use slice (a) as both upper and lower slice;(e) (f) (g) models constructed between (e)-(e), (e)-(f) and (f)- (f) with 
hidden lines removed; (h) (I) The shaded view of the result seen from two different viewpoint.

(a) (b) (c)
Fig. 6  A complicated branching problem contains a hole: (a) The top view of lower and upper slice; (b) The result 
with hidden lines removed; (c) The shaded view of the result.
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