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Abstract: Solving engineering problems is a creative, experiential process. An experienced 
engineer  generally solves  a  new problem by recalling some similar  instances  examined 
before  and  applying  what  he  learned  from the  present  problem,  through  adaptation  or 
synthesis.  According  to  such  a  method,  the  IFN  learning  model  was  developed  and 
implemented as a computational model for problem solving. This model has been applied to 
design problems involving a complicated steel structure. Computational results indicate that 
the IFN model can learn the complicated problems within a reasonable computational time 
owing to its simplicity. The learning performance of IFN, however, relies heavily on the 
values of some working parameters selected on a trial and error basis. In this work, we 
present an augmented IFN learning model by integrating a conventional IFN learning model 
with two novel  approaches:  a  correlation  analysis  in  statistics  and  a  self-adjustment  in 
mathematical optimization - to facilitate the search for appropriate working parameters in 
the conventional  IFN.  The problem of arbitrary trial  and error  selection of the working 
parameters is avoided in the augmented IFN learning model.

Keywords:Artificial Neural Networks, Supervised Learning Models, Unsupervised Fuzzy 
Learning Model, Structural Design. 

1. TNTRODUCTION

Solving  engineering  problems,  such  as  analysis 
and  design  problems,  is  a  creative,  experiential 
process  in  which  the  experiences  and  combined 
knowledge  of  engineers  serve  as  resources.  An 
experienced engineer generally solves a new problem 
in the following stages. First, he or she recalls some 
similar instances that have been solved before while 
properly considering the functional  requirements of 
those instances. Then, the engineer attempts to derive 
the  solution  from  these  similar  instances  through 
adaptation or synthesis. After the problem is solved, 
the new instance is then stored in her/his memory as 
an additional knowledge resource for solving further 
problems in the future. 

The  above  stages  can  be  implemented  as  a 
computational model for problem solving that utilizes 
a  case  base  of  previously  solved  problems  when 
solving  a  new  problem.  In  symbolic  artificial 
intelligence  (AI),  case-based  reasoning  [1]  is  an 
effective  means  of  facilitating  computer  program 
development  that  attempts  to  solve  problems  by 
directly  accessing  the  case  base.  Artificial  neural 
networks  (ANNs),  on  the  other  hand,  constitute  a 
different AI approach that has made rapid advances in 

recent  years.  Such  networks  have  the  ability  to 
develop, from training instances, their own solutions to 
a class of problems [2-5]. 

Recently,  authors  [6][7]  presented  an  integrated 
fuzzy  neural  network  (IFN)  learning  model  in 
structural  engineering.  The  IFN  learning  model 
combined a novel unsupervised fuzzy neural network 
(UFN)  reasoning  model  with  a  supervised  neural 
network  learning model  using the  adaptive  L-BFGS 
learning algorithm [8].  The IFN learning model was 
applied  to  steel  beam  design  problems.  That  work 
contended that the IFN learning model is a robust and 
effective  ANN learning model.  In  addition,  the IFN 
model can interpret a large number of instances for a 
complicated engineering problem within a reasonable 
computational  time  owing  to  its  simplicity  in 
computation.  However,  the  performance  of  the  IFN 
learning model  is  heavily affected by some working 
parameters  that  are  problem-dependent  and  obtained 
via trial and error. 

Herein, we present a more effective neural network 
learning  model,  called  the  augmented  IFN  learning 
model,  by  integrating  a  conventional  IFN  learning 
model  with  two  newly  developed  approaches:  a 
correlation analysis in statistics and self-adjustment in 
mathematical  optimization.  The  first  approach, 
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correlation analysis in statistics, is employed to assist 
users  in  determining  the  appropriate  working 
parameter  to  be  used  in  the  fuzzy  membership 
function.  The  second  approach,  self-adjustment  in 
mathematical  optimization,  is  used  to  obtain 
appropriate weights, systematically, for each decision 
variable required in the input of training instances. The 
augmented  IFN  learning  model  proposed  herein  is 
applied  to  the  preliminary  design  of  steel  structure 
buildings. 

2. REVIEW OF IFN LEARNING MODEL

The IFN learning model combines two sub-ANN 
learning models [6]. One is a novel unsupervised fuzzy 
neural  network  (UFN)  reasoning  model:  a  single-
layered  laterally-connected  network  with  an 
unsupervised competing learning algorithm. The other 
is  an  offline  assistant  model:  a  supervised  neural 
network  learning  model  with  the  adaptive  L-BFGS 
learning  algorithm [8].  The  IFN  learning  model  is 
schematically depicted in Fig. 1.
The learning stage in the IFN model is performed in 
two sub-ANN models concurrently.  First,  the offline 
assistant supervised neural network model is trained, 
based  on  the  adaptive  L-BFGS  supervised  learning 
algorithm. In the UFN reasoning model, however, the 
learning process simply involves selecting appropriate 
working parameters for the fuzzy membership function 
and weights for each decision variable in the input. 

After  learning  in  the  UFN  and  in  the  assistant 
supervised  learning  model  is  completed,  any  new 
instance X can be solved via the IFN learning model. 
The reasoning in UFN is performed through a single-
layered  laterally-connected  network  with  an 
unsupervised  competing  algorithm  and  it  is 
implemented  in  three  steps.  The  first  step  involves 
searching for  some instances from the instance base 
that  resemble  the new instance  X according to  their 
inputs. 
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The  final  step  involves  generating the  output  Xo 

vector of instance X by synthesizing the outputs of its 
similar  instances  according to  their  associated  fuzzy 
membership values using center of gravity (COG) or 
mean of maximum (MOM) methods [6][7]. 

The  reasoning  process  of  the  UFN  depends  on 
determining the degree of similarity among X and Uj. 
Consequently,  no  solution  can  be  generated  by  the 

UFN  reasoning  model,  if  the  new instance  entirely 
differs from all instances in the instance base, e.g. all 
dXi  are  greater  than  Rmax.  In  addition,  using 
inappropriate working parameters would allow for the 
possibility that  no  similar  instances  can  be  derived. 
For  the  above  issues,  the  under-trained  adaptive  L-
BFGS  supervised  neural  network  is  used  as  an 
assistant system to generate an approximate output for 
the new instance. 

Figure 1 Conventional IFN learning model.

3. AUGMENTED IFN LEARNING MODEL

In the conventional IFN learning model, working 
parameters, such as wj, αm, Rmax, and Rmin, are selected 
subjectively by  users  and,  generally,  on  a  trial  and 
error basis. Consequently, the learning performance is 
highly  affected  by  these  parameters,  especially  Rmax 

and  αm.  In  this  work,  two  novel  approaches  are 
employed  for  assisting  the  users  to  determine  these 
parameters and weights systematically. 

3.1 Correlation Analysis for maxR  in Fuzzy 
Membership Function

In conventional IFU, the similarity measurement 
between two instances heavily depends on the value of 
parameter  Rmax.  A small value of  Rmax implies that  a 
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strict similar relationship between instances is utilized. 
Consequently,  most  of  the  instances  are  sorted  as 
dissimilar. Consequently, few similar instances to the 
new instance can be found and, ordinarily, no solution 
can be generated via the UFN reasoning model. On the 
other  hand,  a  loose  similar  relationship  is  adopted 
under the case of a larger  Rmax.  Accordingly,  a large 
number of instances are taken to be “similar instances” 
and the solution generated via these similar instances, 
is  inferior.  Here,  the  linear  correlation  analysis  in 
statistics is employed to facilitate the determination of 
appropriate  value  of  Rmax in  the  fuzzy  membership 
function.  The  analysis  is  a  process  which  aims  to 
measure the strength of the association between two 
sets  of  variables  that  are  assumed  to  be  linearly 
related.
 For the above instance base U with N instances, the 
correlation analysis in the fuzzy membership function 
is implemented in the following steps. The first step is 
to determine the degree of difference between any two 
instances  in  the  base  U using  the  aforementioned 
function of degree difference in Eq.(1). Hence, a total 
of  ( NC2 +N)  resembling  samples,  ),,( ,, ijojoiij dUUS , 
can be compiled.  A resembling sample contains two 
instances’  outputs  ( oiU ,  and  ojU , )  and  the 
corresponding  degree  of  difference  (dij).  Thereafter, 
two arrays, At and Bt, can be assorted from resembling 
samples  in  the  case  of  dij less  than  or  equal  to  a 
prescribed value, say t. The elements in At and Bt are 
the  first  and  second  items,  respectively,  of  these 
resembling  samples.  Next,  the  accumulative 
correlation  coefficient,  Ac_CORREL(At,Bt,t),  is 
calculated  for  arrays  At and  Bt with  the  degree  of 
difference less than or equal to  t.  Assume that for a 
total  P resembling  samples  with  dij less  than a 
prescribed t, the arrays At and Bt can be denoted as
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where  tAσ  and  

tBσ  are standard errors of arrays  At 

and Bt;  tAµ  and tBµ  are the means of At and Bt. The 
formulas  expressed  in  (3)  and  (4)  represent  the 
relationship  between  the  accumulative  correlation 
coefficient  to  any  value  of  t.  An  accumulative 
correlation curve can be plotted as a function of t and 
Ac_CORREL(At,Bt,t).  Note  that  the  appropriate  Rmax 

equals a certain value of  t such that instances in the 
instance base U have a certain degree of correlation.

Obviously,  the  smaller  the  t implies  a  larger 
accumulative  correlation  coefficient,  indicating  a 
strong relationship between the  two arrays,  e.g.,  the 
strongest  correlation,  t=0,  between  the  two  arrays 
refers to the case in which the instances in the two sets 
are  identical  and  the  value  of  Ac_CORREL(At,Bt,t) 
equals  one.  In  such  a  case,  no  solution  to  a  new 
instance  can  be  generated  via  the  UFN  reasoning 
model except for when identical instances exist in the 
instance base. In order to avoid this issue here, we set 
Ac_CORREL(At,Bt,t) equal to 0.8 as the lower bound 
for  similarity  measurement.  The  value  of t  
corresponding to this lower bound is adopted as the 
appropriate value of Rmax.

3.2 Self-Adjustment for Selecting Weights αm

Except  for  Rmax,  the selected  weights  αm also 
significantly affect  the  learning  performance  for  the 
conventional  IFN.  This  occurrence  has  been 
investigated  in  the  earlier work  [7].  The  learning 
results  indicated  that  significant  improvements  were 
achieved as the weights were gradually updated via a 
basis of heuristic knowledge associated with learning 
problems. In this study, a more systematical approach - 
self-adjustment based on mathematical optimization - 
is  adopted  to  facilitate  the  search  for  appropriate 
weights.

For the above instance base U with N instances, 
the self-adjustment approach can be briefly stated as 
consisting  of  the  following  steps.  First,  set  up  the 
corresponding working parameters,  Rmax,  Rmin, and  wj. 
where  Rmax is  determined  using  the  aforementioned 
correlation analysis approach;   and where parameter 
Rmin and weights  wj, are set as constants in this work. 
Meanwhile, weights  αm for each decision variable in 
the input are directly initialized as one. Then, based on 
these  working  parameters,  the  outputs  for  training 
instances  are  found  via  the  UFN  reasoning  model. 
Then the error,  Ei, between the computed and desired 
outputs,  Y and  Ui,o,  for  training  instance  Ui ,  is 
calculated. The system error, E, for a total N instances 
is then defined as half of the average sum of errors and 
denoted as
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where  k
io  and  ky are the  kth items of data in desired 

and  computed  outputs,  Ui and  Y,  respectively.  Note 
that  the  system error  is  an  implicit  function  of  the 
weights αm as )( mE α .
 Weights  αm in  the  UFN  reasoning  model  are 
adjusted  to  reduce  the  system  error  as  much  as 
possible.  This  goal  can  be  achieved  if  a  set  of 
appropriate weights,  αm, are used. The problem, then, 
can  then  be  considered  as  an  unconstrained 
optimization  problem;  that  is  searching  a  set  of 
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optimum weights by iteration to minimize the system 
error.  In  the  mathematical  optimization  approaches, 
the conjugate gradient (CG) method has been proved 
an efficient means of solving the problem. The weights 
αm are  updated  in  each  iteration,  say  the  (s+1)th 
iteration, as  )()()1( ss

m
s

m dλαα +=+ .  The  term   is  step 
length and is set as a constant in this work. The search 
direction d(s) is defined as
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is the negative gradient vector of function  E(αm). For 
simplicity,  the  superscript  (s),  denoted  as  the  sth 
iteration,  is  ignored.  Hereinafter,  vector  g can  be 
derived as
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3.3 Augmented IFN Learning Model

 Figure  2  schematically depicts  the procedures  of 
the augmented IFN learning model. Instead of using a 
constant  working  parameter  Rmax as  in  conventional 
IFN,  the  appropriate  parameter  is  determined  using 
correlation  analysis.  Meanwhile,  the  appropriate 
weights  αm are  adapted  during  the  self-adjustment 
process  through  a  mathematical  approach.  The 
procedure of the augmented IFN learning model can 
be summarized as follows:
Self-organized learning phase:
Step 0: Train the adaptive supervised L-BFGS 

learning neural network model offline.
Step 1: Initialize parameter Rmax as constant 10-5 and 

weight αm for each decision variable on a 
heuristic basis or by trial and error.

Step 2: Calculate the degree of difference dij (i≠j) 
among all instances in base V.

Step 3: Determine the parameter Rmax using 
correlation analysis and set Rmax=t such that 
Ac_CORREL(At,Bt,t)=0.8.

Step 4: Set the fuzzy membership function, 
),,()( maxmin ijij dRRfd =µ , defined in Eq.(2). 

Step 5: Adjust the weight αm for each decision 
variable in input using the self-adjustment 
approach.

Analysis  phase  (After  the  learning  phase  is 
completed):
Step 6: Present the new (unsolved) instance X to the 

UFN reasoning model and perform a 
similarity measurement between X and 
instance Ui in the base U using a single-
layered lateral-connected competing network.

Step 7: If more than one similar instance is found in 
Step 6, generate the solution Xo for the new 
instance using fuzzy synthesis approaches in 
Eq. (4) or (5) and go to Step 9. Otherwise, go 
to next step. 

Step 8: Compute the solutions via the under-trained 
assistant adaptive L-BFGS supervised 
learning model and go to next step.

Step 9: Feedback the new instance into the base U. 
Meanwhile, further learning in the assistant 
supervised learning model is launched offline.

Figure 2 Augmented IFN learning model.

4. APPLICATIONS

In this work, the augmented IFN learning model is 
trained  to  learn  how  to  implement  the  preliminary 
design of buildings satisfying the conditions of utility, 
safety, and economy in only one design cycle. In the 
complete design of a structure, the preliminary design 
stage  is  mainly a  creative,  experiential  process  that 
involves the choice of structure type, selection of the 
material, and determination of  the sections of beams 
and columns in the structure. An experienced engineer 
is likely to carry out this stage more quickly than does 
an inexperienced one. The basic configuration of the 
structure at this stage should satisfy the specified, such 
as  LRFD  [9]  for  steel  structures.  To  satisfy  the 
prescribed  constrains  and  achieve  minimum 
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expenditure for materials and construction, this stage 
becomes  a  looped  optimization  decision-making 
process.  Hence,  a  good  initial  development  of  the 
basic  form,  with  sections  of  beams  and  columns 
satisfying the aforementioned constraints, will reduce 
the number of redesign cycles.  The present  example 
involves  a  complete  design  structure  which satisfies 
the conditions that the service loads should not exceed 
the  strength  of  the  members;  the  drifts  should  be 
within the prescribed limits, and the structure should 
be  economical  in  material  (e.g.  minimum  weight), 
construction,  and  overall  cost.  For  simplicity,  only 
regular  buildings  with a  rectangular  layout,  such  as 
most  factory buildings,  are  considered  herein.  Also, 
the  beams  in  every  floor  have  the  same  sectional 
dimensions, as do the columns.

416 instances are used in this example. They are 
randomly divided into 380 training instances and 36 
verification  instances.  Seven  decision  variables  are 
used as inputs to determine the sections of beams and 
columns  of  a  building  that  satisfies  the  given 
specifications. The seven decision variables and their 
limits are described as following: 
1. Number  of  stories  =  [9,  10, 

11,12,13,14,15].
2. Bay  length  in  long  span  direction  (X 

direction)= 9 to 12 meters.
3. Bay  length  in  short  span  direction  (Y 

direction)= 6 to 9 meters.
4. Number of bays in both directions = [3, 4, 

5].
5. Seismic  zone  coefficient  =  [0.18,  0.23, 

0.28, 0.33].
6. Live load ( 2/ mkgw ) = 200 to 350.
7. Wall load ( mkgw / ) = [100, 200].
Other  corresponding  decision  variables  used  in  the 
stage  of  preliminary  design  are  assumed  to  be 
constant.  Here,  a building with three groups of steel 
elements  in  both  beams and  columns is  considered. 
The three groups are upper,  medium, and lower. An 
instance  contains  seven decision  variable  inputs  and 
six data items as outputs. 

The parameters minR and wi are set as constant 10-5 

and one, respectively. The weights  mα , however, are 
initialized as [1, 1, 1, 1, 1, 1, 1] for the seven decision 
variables.  Using  these  parameters  and  weights, 
correlation  analysis  in  the  augmented  IFN  learning 
model  is  performed  first  to  determine  the  working 
parameter Rmax. With the value of Ac_CORREL(At,Bt,t) 
equal  to  0.8,  the  values  of  t(= maxR )  are  obtained. 
They  are  0.12  for  beams  and  0.178  for  columns, 
respectively. 

After the fuzzy membership function is defined, the 
self-adjustment approach is then launched to obtain the 
adequate weights mα for each decision variable in the 
input. The weights  mα  for each decision variable are 
updated  from [1,  1,  1,  1,  1,  1,  1]  to  [1.471,  1.369, 

0.416,  0.008,  1.104,  0.825,  0.513] for beams and to 
[1.106, 0.997, 0.542, 0.009, 1.232, 0.999, 0.997] for 
columns.  Interestingly,  the  weights  of  the  fourth 
decision variable in beams and columns are both self-
adjusted close to zero. This observation indicates that 
this  decision  variable  (number  of  bays  in  both 
directions) is insignificant in the input. Consequently, 
this  decision  variable  can  be  neglected.  The  36 
verification instances  are  used to  verify the learning 
performance of the augmented and conventional IFN 
learning models, respectively. Notably, the augmented 
IFN  is  verified  on  the  basis  of  the  newly adjusted 
weights  αm with  the  adequate  Rmax.  The  working 
parameters and weights used in the conventional IFN, 
however, are selected on a trial and error basis. Table 
1  summarizes  the  learning  results  for  thirty-six 
verification  instances.  According  to  this  table,  the 
average percentage errors for beams and columns are 
13.81  and  9.36  for  the  conventional  IFN  learning 
model. However, these errors are reduced to 6.17 and 
6.1  for  beams  and  columns,  respectively,  for  the 
augmented IFN learning model.  The augmented IFN 
learning  model  significantly  improves  in  terms  of 
learning. 

TABLE 1. Results of Preliminary Structural Design 
Problem

Error (%)

Number of items in output for 
verification instances

Conventional IFN 
Learning Model

Augmented IFN 
Learning Model

Beam Column Beam Column
0~5 12 43 52 51
5~10 29 29 39 31
10~15 21 22 13 20
15~20 29 10 3 6
> 20 17 4 1 0

Average 
Error 13.81 % 9.36 % 6.10 % 6.17 %

Note: Each instance has six items, three beams and 
columns, in output.

5. CONCLUUSIONS

This work presents an augmented IFN learning 
model by integrating two newly developed approaches 
into  a  conventional  IFN  learning  model.  These 
approached are a correlation analysis in statistics and 
self-adjustment  in  mathematical  optimization,  which 
collaboratively enhance the learning capability of the 
conventional IFN. The augmented IFN learning model 
proposed  herein  is  applied  to  engineering  design 
problem  of  preliminary  design  of  stell  structures. 
Based on the results of this work, we can conclude the 
following:
1. The problem of arbitrary trial and error selection 

of  the  working  parameter  (Rmax),  in  fuzzy 
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membership  function,  encountered  in  the 
conventional IFN learning model is avoided in the 
newly developed augmented IFN learning model. 
Thus,  the  new  learning  model  provides  a  more 
solid systemic foundation for IFN learning than the 
conventional IFN learning model. 

2. In  the  conventional  IFN  learning  model,  the 
weights  αm,  denoting  the  importance  of  the  mth 
decision variable in the input, are set on a trial and 
error basis. This problem is avoided by the newly 
developed learning model. Instead of an assumed 
constant,  the  appropriate  weights  are  determined 
through  the  self-adjustment  approach  in 
mathematical  optimization.  Therefore,  the 
augmented  IFN  learning  model  provides  a  more 
solid mathematical foundation for neural network 
learning.

3. For each training instance, decision variables in 
the  input  are  generally  selected  subjectively  by 
users. As a result,  some trivial decision variables 
may be adopted in the input for some complicated 
examples. Based on the self-adjustment approach, 
the importance of a decision variable in an input 
can  be  derived  systematically.  Therefore, 
insignificant or redundant decision variables in the 
input can be neglected. 
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