
APPLYING GENETIC ALGORITHM ON SELECTING EMERGENT
MEDICAL STATION BEFORE DISASTERS

Ming-Der May

Department of Industrial Engineering and Management, LungHwa Institute of Technology
Taoyuan, Taiwan, R.O.C.

Abstract: This study applying a mathematical approach to select facilities for the emergent rescue
plan before the natural disasters, such as earthquakes, typhoons and floods. The hazardous area is
divided into sub-area by the capacity of medical treatments and the distance between the habitants,
and the emergent medical station is located at the position of the seed of this sub-area. When if
any disaster happens, the wounded can be sent directly to the nearest medical station and will
accept proper treatments. Such a problem can be formulated as the so-called Capacitated
Clustering Problem (CCP). The CCP is to partition a group of n items (ex. the habitants) into k
clusters (ex. Sub-areas) and the entities within a cluster should be as homogeneous as possible and
under volume constraints. This study applies genetic algorithm (GA) to solve the CCP and the
solution quality is compared with integer optimization software, LINDO. Further research of the
emergency evacuation plan is another similar problem and worthy of more detailed study..

Key Words: capacitated clustering problem, genetic algorithms, binary coding, adaptive penalty
function, medical station location

1. INTRODUCTION

This study applying a mathematical approach to
select facilities for the emergent rescue plan before
the natural disasters, such as earthquakes, typhoons
and floods. The hazardous area is divided into sub-
area by the capacity of medical treatments and the
distance between the habitants, and the emergent
medical station is located at the position of the seed
of this sub-area. When if any disaster happens, the
wounded can be sent directly to the nearest medical
station and will accept proper treatments. Such a
problem can be formulated as the so-called
Capacitated Clustering Problem (CCP).

This capacitated clustering problem is defined as
dividing n nodes or objects into k groups to minimize
the assignment cost and to satisfy the capacity
constraints. The CCP is a special case of the facility
location problem and is closely related to the
generalized assignment problem [4] and p-median
problem. Garey and Johnson [5] indicated not only
that the CCP is NP-complete, but also that exact
optimization integer programming algorithms are
ineffective for larger problems.

The generalized assignment algorithm developed
by Fisher and Jaikumar [4] for vehicle routing
ushered in the use of the CCP. They used very
simple heuristics to solve the generalized assignment
problem which is a subset within the larger vehicle
routing problem. The generalized assignment
problem, however, requires the pre-specification of
seed nodes that serve as clustering points. In large
problems, the choice of the seed nodes can be

extremely difficult. Algorithms for CCP, on the other
hand, explicitly choose the seeds as part of the
algorithm. Mulvey and Beck [12] proposed
heuristics and used randomly generated seeds as
initial solutions for solving the CCP. Koskosidis and
Powell [10] extended the work of Mulvey and Beck
by proposing an iterative algorithm that was shown
more effective for developing initial seeds.

Meta-Heuristics such as the genetic algorithms,
simulated annealing and tabu search methods have
become increasingly popular as a means to solve
difficult combinatorial optimization problems with
the type similar to those in operations research.
However, there do not exist many research reports
using GA to solve the CCP. Thangiah and Gubbi
[15] proposed a genetic sectoring method to find
good clusters of nodes for the vehicle routing
problem with a "cluster-first route-second" problem
solving strategy. Once the clusters are identified by
the genetic search, classical insertion and post-
optimization procedures are applied to produce the
chosen routes. Although this approach is able to
solve the CCP, it is designed on the Euclidean plane
and may not suit the problems on the road networks
in real world. On the other hand, Osman and
Christofides [13] employed the hybrids of simulated
annealing and tabu search methods to solve the CCP.

2. PROBLEM FORMULATION

The mathematical formulation shown below is the
Capacitated Clustering Problem defined by
Koskosidis [11].

180_MC4.doc- 1 -

(7) 1or 0

(6) , 1or 0

(5)

(4) ,

(3) 1

(2) subject to

(1)),(minimize

Jjjg

JjIiijy

K
Jj jg

JjIijgijy

Ii
Jj ijy

Jj
Ii

Vijyiq
Ii Jj ijyijcgyF

∈∀=

∈∈∀=

≤
∈

∈∈∀≤

∈∀
∈

=

∈∀
∈

≤
∈ ∈

=

∑

∑

∑

∑ ∑

Where
I : the set of habitant node, i=1,2,…N.
J : the set of candidate seed location j.
K : the number of available medical stations.
cij : the cost of traveling directly from habitant node

i to j.
qi : the number of habitants in node i.
V : the capacity of the medical station that serves the

cluster

Binary Variables:
yij = 1 if node i belongs in the cluster of seed j
 0 otherwise
gj = 1 if node j is a seed node for medical station
 0 otherwise

The variables yij are the assignment variables; and
the variables gj indicate whether a candidate seed j is
selected. The cost coefficients cij measure the
impedance between a node i and a seed j (e.g. cij

could be the distance between i and j or a composite
measurement of distance, travel time, etc.).The
objective function of the CCP model is to minimize
the total assignment cost of nodes to the cluster seeds.

Constraint (2) in the above formulation restricts
the number of nodes assigned to a cluster (i.e., a
medical station), such that the capacity of the medical
station is not exceeded. Constraint (3) ensures that
each node is assigned to the one, and the only one,
seed j; and constraint (4) is to prevent assigning a
node i to the candidate seed j which has not been
selected as a seed (in which case yij =0). Finally,
constraint (5) ensures that as many as K seeds are
chosen.

3. APPLICATION OF GENETIC
ALGORITHMS

Holland and his associates at the University of
Michigan developed genetic algorithms in the 1960s
and 1970s. The first full systematic treatment was
contained in his book Adaptation in Natural and
Artificial System [7] published in 1975. The guiding
premise of GA is that the complex problem can be
solved by simulating evolution via a computer

algorithm. In the original GA conception, the process
is viewed as a black box that provides evaluations of
chromosomes (solutions). These evaluations are then
used to bias the selection of chromosomes in a way
that superior chromosomes (i.e. those with higher
evaluations) will reproduce more often than that of
the inferior.

The application of GA to solve CCP in the study
has the following advantages. First, the CCP is a 0-1
integer problem and is therefore natural to represent
the problem by the binary coding of GA. Likewise,
this discrete feature needs the least effort when
decoding the chromosomes to the original problem.
Second, the CCP is a NP-Complete problem and the
existing solution methods are complicated, therefore
the application of GA will be worthy if it can provide
better solutions with less or even the least problem-
related information and knowledge.

3.1 Coding and Decoding for the CCP

There are several ways to represent the problem
with proper coding for genetic search, such as binary
coding, sequential coding and k-ary coding. In this
study, the CCP is coded as binary strings for the
following two reasons. First, the CCP is a 0-1 integer
problem, thus, the application of a GA would be
straightforward to encode a solution as a binary
string. Second, during the genetic search, a binary
string will naturally compatible with the standard GA
operators, i.e. reproduction, crossover and mutation
and will not generate infeasible offspring. This
feature will save the computing resource and make it
easy to implement.

In the formulation of the CCP, nodes are
classified into clusters according the set of seeds.
Therefore, the encoded chromosome has to find a
seed node in each cluster. A natural representation
might be a chromosome with two parts: one for nodes
and the other for seeds. Thus, the developer can
define a binary chromosome at the length of 2NK,
where N is the number of nodes and K is the number
of available medical stations. In the part of nodes,

and in the part of seeds,

Although this approach is straightforward, it
would expend a rather lengthy chromosome and
many solutions would inevitably be infeasible.

Another approach used in this study is to define a
chromosome at the length of aN +bK, where a and b
are the number of binary digits to represent the nodes
and seeds. Like the example of chromosome in
Figure 1, the genes for nodes are divided into sub-
groups for every “a” digits (in this example, a = 4).
In the ith division, the binary digits are changed to
decimal according to the value of j. The j is the

180_MC4.doc- 2 -





=
otherwise. 0

cluster in the is node if 1 ki
yik

cluster that the ith node belongs to. There will be at
most 16 alternative clusters for each node when “a”
is equal to four. In the part of genes for seeds, every
division of b (five in this example) digits represents
the position of the seed node in the cluster. In the
example of five digits, there are at most 32 positions
in a cluster, therefore, it is the maximum number of
nodes in a cluster. Since a and b are substantially
less than N or K, we can see that aN +bK will be less
than 2NK. This will save memory space and
computing time.

0110|0011|…|…..|0110|01101|10010|…|01110|

Figure 1. Chromosome for CCP

The initial population is generated randomly by
GA. Every chromosome of the population will be
decoded into a solution by the way depicted in Figure
1. The next step is to evaluate the fitness of every
solution in order to generate a new population. The
following sections will describe the operating
strategies to generate a new population first and then
to illustrate the methods to find fitness value for each
chromosome.

3.2 Genetic Operating Strategy

After generating the initial population, the GAs
apply three operators to find new populations. In this
study, the binary coding will be inherently compatible
with the traditional SGA operators, therefore, no
additional effort is needed to design a new operator
for this problem. However, many strategies are
applied in this study to enhance the performance of
GA as an optimizer.

3.2.1 Reproductive Strategy

When generating a new population, this study
adopts De Jong's [2] concepts of elitism and
population overlaps. An elitist strategy ensures the
survival of a best individual so far by preserving it

and replacing only the remaining members of the
population with new strings. Overlapping population
take a stage further by replacing only a fraction r
(replacement rate) of the population at each
generation. Selection schemes also have to be
considered here. The original roulette-wheel method
is chosen here because it performs better than the
other methods after empirical tests.

The scaling or normalizing of fitness for the
members of population is necessary since the

objective has to be changed from being minimized to
being maximized. Therefore, a reverse ranking
method, i.e. a lower fitness indicates a higher rank, is
used.

3.2.2 Recombination Strategy

The original one-point crossover operator may not
be the best approach for every problem. In this study,
GA uses multipoint operator, where n crossover
points are chosen randomly.

The question of how often crossover should be
applied has been investigated experimentally in the
literature. De Jong's [2] experiment suggested that a
crossover rate of 0.6 was appropriate. Grefenstette
[6] proposed 0.95, while Schaffer et al. [14]
suggested it should vary with population size and
string length. After testing several values, the
crossover rate of 1.0 is chosen in this study.

The mutation rate that decide how often mutation
should be applied is also obtained by
experimentation. A value of 0.02 is selected and the
type of mutation rate is per-gene, that is, every gene
will have the possibility of 0.02 to mutate.

3.3 Fitness Evaluation

The fitness value is composed of the value of the
objective function and the measurement of
unfeasibility of the constraints.

3.3.1 Objective function

The objective function in the equation (1) of the
CCP model minimizes the total assignment cost of
nodes to the seed of the assigned cluster. The
assignment cost is the distance of the shortest path
from a node to its tagged seed. In this study, the
matrices of the shortest path for every node to the
others are stored that the GA can access in the
process. The value of the objective function is the
basic fitness for every individual string.

3.3.2 Constraints

In the formulation of the CCP, the constraints,
from (2) to (5), must be included to obtain feasible
solutions. Because of the genetic coding method of
the CCP as illustrated in Figure 3, most of these
constraints are conformed inherently. For instance,
the constraint (3), i.e. each node has to be assigned to
the only one seed, is satisfied automatically by the
genes of nodes. The constraint (4) that ensures the
assignment of a node to a selected seed is not
necessary here, because the genes of seeds always
assign a seed for each cluster. Similarly, the
limitation of k seeds in constraint (5) is satisfied since
the genes of seeds are decoded as many as k seeds.

Only the constraint (2) that the accumulated
volume in each cluster should not exceed the capacity
of the medical station has to be handled separately.

180_MC4.doc- 3 -





=
otherwise. 0

cluster of seed theis node if 1 ki
g ik

Genes of nodes Genes of seeds
…..……

….Node 1 Node n Seed 1 Seed k

This constraint cannot be satisfied by the coding
string inherently and must be done with other
methods. In this study, we use the penalty method
because it needs less modification and is easy to
implement.

3.3.3 Adaptive Penalty Function Method (APF)

In fact, much experience in literature shows that a
naïve attempt to use penalty function often fail. If the
penalty is too small, many infeasible solutions are
included to propagate; if the penalty is too large, the
search is confined to the interior of the search space
and far from the boundary of the feasible region.
Note that it is common to find the global optimum on
or near a constraint boundary.

To address this kind of failure, Fairley [3] and
Coit, Smith and Tate [1] suggested using adaptive
penalty functions in such situations. This study
adopts the proposal by Coit et al. [1]. The rationale
of this method is that moderately infeasible solutions
will lie near the feasibility boundary and close to the
optimal solution. The penalty function allows some
unfeasibility, because the infeasible solutions have
the potential to recombine or mutate to produce a
near optimal solution. The fitness after being
penalized by the capacity constraint (2) is derived
from the following equation.

Fp(x) = F(x) + (Ffeas - Fall) ck

cNFT
Capacity)(∆

(8)
Fp(x) : penalized objective function (fitness).
F(x) : unpenalized objective function value for

solution x.
Ffeas : the best feasible solution value yet found.
Fall : the unpenalized value of the best solution

yet found.
∆Capacity: the excessive amount for capacity

constraint.
NFTc : Near-feasible threshold for capacity

constraint.
kc : user specified severity parameter for

capacity constraint.

The penalty function will encourage GA to
explore within the feasible region and the NFTc

neighborhood of the feasible region, and discourage
search beyond that threshold. The NFTc could be a
static constant or a dynamic searching parameter
changed as a function of generation number. This
study applies the following equation to decrease the
value of NFTc as the algorithm progresses.

NFTc = NFT0 / Generations (9)

The NFT0 is some upper bound for NFTc. Coit et al.
[1] point out that the definition of NFTc is not only
problem specific, but also constraint specific. This

study will show how the NFTc, or actually the NFT0,
affects the performance of the algorithm in the next
section of computational analysis.

3.5 Stop rules

Generally, the designated number of generation is
often the signal to stop the algorithm. The other
approaches might use a measure of convergence that
requires the difference of the best fitness between two
generations is less than a specified constant. Another
stopping rule is to apply a target value to stop the
algorithm. In this study, the number of generation is
the major rule to stop the algorithm, and the target
value is applied if other solution algorithm gives
some lower bound.

3.6 Using SUGAL

SUGAL [soo-gall] is the SUnderland Genetic
Algorithm package, developed by Dr. Hunter at the
University of Sunderland, England. It is a package,
written in 'C' language, designed for experimentation
with GA and related techniques [8, 9]. The package
is employed to perform a GA research and provides a
large number of options on configurations and
extendibility. This feature enables the researchers to
evaluate different operation strategies easily.
Another major feature of the SUGAL is that the user
needs only to provide a single C procedure, which
can evaluate the fitness of a chromosome, and a
simple main procedure, which hands over control to
the SUGAL code. Although the user still has to write
some computer codes, he will not have to intervene in
the coding of other genetic operations and can focus
on finding better solutions.

In the following computational study, the SUGAL
is applied to solve the CCP according to the string
coding, operational strategies and fitness evaluation
methods that have been described in the above
sections.

4. COMPUTATIONAL STUDY
In this section, the major objective is to evaluate

the quality of solutions and computing efficiency of
the proposed GA methods, and to compare the
adaptive penalty function with different parameters
each other.

The testing network, which has 103 nodes and
167 arcs, is the output from the map of Chung-Li City
that is digitized by GIS software, Arc/Info. The set
of habitant nodes are chosen randomly from the
existing road network. Every node has a number of
the network and the amount of habitant around it.
Every arc of the network has two cost categories.
They are the functional values of the corresponding
arc length and traffic volume. The two kinds of cost
categories represent the lengths of the arc in both
directions and may be different to each other. The
matrix of shortest path for every candidate node is

180_MC4.doc- 4 -

derived from this real road map and is saved as files
that the GA can access it during the process. Table 1
lists the characteristics of the seven problems ..

Table 1. Characteristics of the first problem set
Prob

.
No. of nodes Medical

Capacity
Total habitants

1 28 100 420
2 41 100 810
3 41 100 810
4 41 100 1220
5 41 230 1076
6 55 230 1279
7 46 100 1088

4.1 GA

This study applies SUGAL to perform the
proposed GA methods. Since most of the problem-
related processes, such as the chromosome decoding
and fitness evaluation, are still controlled by the user,
using SUGAL is not quite different from the
traditional way that the user programs all the
functions of the GA. In fact, a user can save time for
program coding and try a good many of options to
find the best way to apply the GA to solve a specific
problem.

Some of the parameters are problem-specific such
as a random seed and the chromosome length. The
parameters that are common for every test problem
are listed in Table2.

The improving directions of the GA for solving
the CCP are to reduce the cost of assignment without
violating the capacity constraint. In order to enhance
the convergent speed and performance of the
algorithm, the APF method is employed in two
alternatives. The first, denoted as APF_1, has added
the severity parameter kc = 2 and assign the fitness a
large constant penalty P if this chromosome is
infeasible to capacity constraint. This approach
encourages the GA to search more solutions that are
feasible and decreases the possibility of the inclusion
of infeasible ones.

Table 2. Common values of control parameters
Parameters Value Parameters Value
Annealing decay 1.0 Mutation rate 0.02
Bias 2 Normalization Reverse_
Crossover type Npoint rank_
Crossover points 15 linear
Crossover rate 1.0 Population 80
Elitism On Replacement

condition
Anneale
d

Mutation Invert Replacement
rate

0.7

Mutation
rate type

Per_gene Replacement
Selection

Ranked
Roulette

Another approach (APF_2) has the severity
parameter kc = 3. This is simply an execution of the

equation (8). Therefore, some infeasible solutions
are encouraged to reproduce and the best fitness
chromosome in a generation may be an infeasible
solution. The solutions found by these two
approaches are described in Table 3.

Table 3. Results of GA for the first problem set
Prob Groups APF_1 APF_2

1 5 967.85 806$

(2110,105)%
959.30 2358

(2110,104)
2 11 1125.47 4324

(2110,105)
1106.6 5410

(2110,100)
10 1171.70 6747

(1, 104)
1180 19484

(2110, 1000)
9 1550.2 25506

(1110, 105)
1404.32 27300

(110,2000)
3 10 1492.7 8610

(2110, 105)
1230.60 27824

(1110,1000)
9 1531.0 6151

(5, 106)
1572.13 1488

(2110, 1000)
4 16 865.25 22643

(110, 106)
836.899 1950

(110, 104)
5 5 1816.16 2515

(5,105)
1783.79 8660

(5, 104)
6 7 1818.63 3376

(2110,104)
1849.13 6704

(110, 1000)
6 2253.28 8667

(5, 104)
2238.81 1224

(5, 1000)
7 13 1492.0 4625

(1234, 106)
1386.51 8986

(2110, 5000)
Objective Value %(Random seed, NFT0)
$The number of generation that this solution is generated

The results presented in Table 3 include the
values of the objective, random seeds, NFT0 and the
number of generation that the best solution appears.
The computing time in a Pentium 133 PC is about 10
minutes for every 10,000 generations. Most of the
acceptable solutions are obtained within 10,000
generations. The results indicate that the APF_2
finds better solutions in most of the cases. However,
neither of the two methods is always superior to the
other in the convergence speed. The mechanism of
improving convergence speed in APF_1 possibly
leads to limit on a narrow range of search space that
the algorithm may fail to find better solutions. The
profiles of convergence for APF_1 and APF_2 in
problem 1 are depicted as in Figure 2.

0
500

1000
1500
2000
2500
3000
3500

0 500 1000 1500 2000 2500

Generations

F
it
ne

ss
 V

al
ue

APF_1
APF_2

Figure 2. Comparison of APF_1 and APF_2 for
problem 1.

180_MC4.doc- 5 -

The problem-specific parameter, NFT0, affects
both of the convergence speed and solution quality.
When the NFT0 is small, the algorithm converges
quickly and is prone to become premature
convergence. On the other hand, when the NFT0 is
large, the algorithm will search widely in the
exploration phase to find better solution and may
converge slowly. The performance of different NFT0

for problem 1 is compared in Figure 3.

The effects of different random seeds are shown
in Figure 4. Ten continuous seeds, from 2106 to
2115, are evaluated with problem 1 by the penalty
function of APF_2 and the average fitness is about
1115.54. We can see that the performance of
different seeds is steady in general except for two
cases and the solutions converge within 10,000
generations

0

500

1000

1500

2000

2500

3000

3500

0 1000 2000 3000 4000 5000

Generations

Fi
tn

es
s V

al
ue

NFT=1000
NFT=10000
NFT=100000

Figure 3. Comparing different NFT0 for problem 1.

0
500

1000
1500
2000
2500
3000
3500

0 2000 4000 6000 8000 10000

G enerations

Fi
tn

es
s V

alu
e

Figure 4. Comparison of ten continuous seeds for
problem 1 with NFT0 = 10,000.

Figure 5. The location of medical stations and
habitant nodes for test problem 1

The best result of test problem 1 is drawn as in
Figure 5. There are 28 habitant nodes and five of
them are chosen to be the medical stations. Each
habitant node has been assigned to a medical station
that will have enough capacity and has the minimum
total distance.

5.3 LINDO

A hyper version of LINDO, which can handle the
problems within 4000 integral variables, 2,000 rows,
4,000 columns and 64,000 non-zero items, is used to
obtain the 0-1 integral solution of the CCP. Since the
LINDO uses the branch and bound algorithm, the
final solutions should be the optimal results and they
can be supplied as benchmarks. However, only
problems 1 and 5 achieve the final optimal results.
There are 812 integer variables and 841 constraints in
the problem 1. LINDO obtains the optimum at
1,799,391 pivots and ends at 2,049,575 pivots after
the computing time about three and a half-hour on a
Pentium 133 PC. The problem 5 takes about six
hours. The other problems can not achieve the final
optimal solutions after several times of re-
computation. The temporary solutions are taken as
the answers. Problems 6 and 7 have too many
constraints to be solved by this LINDO hyper
version. The results are shown at the column for
LINDO in Table 4.

Most of the solutions from GA are very close to
the results of LINDO. In problem 1, the solution from
GA is nearly the same as the optimum solution from
LINDO. Only two nodes are clustered in two
different groups. Furthermore, the coding of a
chromosome allows the GA to derive solutions with
the number of medical stations as desired. Therefore,
evaluating the feasibility of using fewer medical
stations is relatively easy. Although using fewer
medical stations implies a more tightly constrained
problem, the GA results, which using fewer medical

180_MC4.doc- 6 -

Medical station Habitant node

stations, are still competitive with the results of
LINDO as demonstrated in Table 4.

Table 4. Results comparison of the first problems set
Prob Groups Best of GA LINDO

1 5 959.30
#0.0001%

959.299

2 11 1106.6
10.24%

*1003.85

10 1171.70
2.54%

*1142.72

9 1404.32
4.7%

*1341.24

3 10 1230.6
-0.8%

*1241.40

9 1531.0
7.38%

*1425.71

4 16 836.899
12.1%

*746.74

5 5 1783.79
5.7%

1686.83

6 7 1818.63 +N.A.
6 2238.81 N.A.

7 13 1386.51 N.A.
Objective Value
Percent deviation from LINDO solution.
*LINDO does not end with an optimal solution.
+The solution is not available, because this version of

LINDO can not solve this problem.

6. CONCLUSION
This study applies a genetic algorithm to solve the

capacitated clustering problem by a general-purpose
GA program library, SUGAL. In the computational
study, severn test problems are solved to evaluate the
performance of the proposed GA method. The binary
coding for this problem does not require modifying
the genetic operators, and can inherently consider
most of the constraints. Experimental results
demonstrate that an adaptive penalty function applied
to handle the capacity constraint can effectively guide
the search direction. These two approaches enhance
the solution quality and computational efficiency of
GA for solving the CCP. Experimental results further
demonstrate that the solution quality of GA is very
competitive with LINDO and the computational time
is significantly less than LINDO.

In this study, the derived locations of medical
stations have the minimum total assignment distance
to each habitant node. However, another critical
factor should be the travel time from any habitant
node to the medical stations. The further study might
use the objective function of travel time and adds one
more time constraint for each node.
Correspondingly, the emergency evacuation plan is
another similar problem and deserves further
attention.

The CCP model can also be extended further. In
equation (1) of the CCP formulation, the objection

function does not consider the marginal cost of using
more medical stations (groups). Therefore, the
objective value may be lower if more medical
stations are available. Further studies should
consider the total cost of the facility and the
assignment cost to simultaneously determine the
number of clusters and the members within a cluster.
Modifying the model proposed herein can be easily
achieved by adding the medical stations cost to the
objective function, or one more penalty for the use of
more medical stations.

REFERENCES
[1] D. W. Coit, A. E. Smith and D. M. Tate,

"Adaptive penalty methods for genetic
optimization of constrained combinatorial
problems," INFORMS Journal on Computing,
Vol. 8, pp. 173-182. 1996.

[2] K. A. De Jong. An analysis of the Behavior of
a Class of Genetic Adaptive Systems, Doctoral
dissertation, University of Michigan, Ann
Arbor, MI. 1975.

[3] A. Fairley. Comparison of Methods of
Choosing the Crossover Point in the Genetic
Crossover Operation, Technical Report,
Department of Computer Science, University of
Liverpool, Liverpool, UK. (1991).

[4] M. L. Fisher and R. Jaikumar, "A generalized
assignment heuristic for vehicle routing,"
Networks, Vol. 11, pp. 109-124. 1981.

[5] M. R. Garey and D. S. Johnson, Computers
and Intractability: A Guide to the Theory of
NP-Completeness, Freeman, San Francisco.
1979.

[6] J. J. Grefenstette. "Optimization of control
parameters for genetic algorithms," IEEE
Transactions on Systems, Man and
Cybernetics, Vol. 16, pp. 122-128. 1986.

[7] J. H. Holland Adaptation in Natural and
Artificial Systems, University of Michigan
Press, Ann Arbor, MI., re-issued by MIT Press.
1992.

[8] A. Hunter. SUGAL Programming Manual,
University of Sunderland, England. 1995.

[9] A. Hunter. SUGAL User Manual, University of
Sunderland, England. 1995.

[10] I. Koskosidis and W. B. Powell, "Clustering
algorithms for consolidation of node orders into
vehicle shipments," Transportation Research-
Part B, Vol. 26, pp. 365-379. 1992.

[11] I. Koskosidis. Optimization Based Models and
Algorithms for Routing and Scheduling with
Time Window Constraints, Doctoral
dissertation, Department of Civil Engineering
and Operations Research, Princeton University,
New Jersey 1988.

[12] J. Mulvey and M. P. Beck, "Solving
capacitated clustering problems," European

180_MC4.doc- 7 -

Journal of Operational Research, Vol. 18, pp.
339-348. 1984.

[13] I. H. Osman, and N. Christofides, "Capacitated
clustering problems by hybrid simulated
annealing and tabu search," International
Transactions in Operational Research, Vol. 1,
pp. 317-336. 1994.

[14] J. D. Schaffer, R. A. Caruana, L. J. Eshelman,
and R. Das, "A study of control parameters
affecting online performance of genetic
algorithms for function optimization,"
Proceedings of 3rd International Conference
on Genetic Algorithm, Morgan Kaufmann
Publisher, San Mateo, CA, pp. 51-60. 1989.

[15] S. R. Thangiah and A. V. Gubbi, "Effect of
genetic sectoring on vehicle routing problems
with time windows," IEEE International
Conference on Developing and Managing
Intelligent System Projects, pp. 146-153. 1993.

180_MC4.doc- 8 -

	Ming-Der May
	1. INTRODUCTION
	2. PROBLEM FORMULATION
	3. APPLICATION OF GENETIC ALGORITHMS
	3.1 Coding and Decoding for the CCP
	3.2 Genetic Operating Strategy
	3.3 Fitness Evaluation
	3.5 Stop rules
	3.6 Using SUGAL

	4. COMPUTATIONAL STUDY
	4.1 GA
	5.3 LINDO

	6. CONCLUSION
	REFERENCES

