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Abstract: This study applying a mathematical approach to select facilities for the emergent rescue 
plan before the natural disasters, such as earthquakes, typhoons and floods.  The hazardous area is 
divided into sub-area by the capacity of medical treatments and the distance between the habitants, 
and the emergent medical station is located at the position of the seed of this sub-area.  When if 
any disaster happens, the wounded can be sent directly to the nearest medical station and will 
accept  proper  treatments.   Such  a  problem  can  be  formulated  as  the  so-called  Capacitated 
Clustering Problem (CCP). The CCP is to partition a group of n items (ex. the habitants) into k 
clusters (ex. Sub-areas) and the entities within a cluster should be as homogeneous as possible and 
under volume constraints.  This study applies genetic algorithm (GA) to solve the CCP and the 
solution quality is compared with integer optimization software, LINDO.  Further research of the 
emergency evacuation plan is another similar problem and worthy of more detailed study..
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1. INTRODUCTION

This study applying a mathematical approach to 
select  facilities for the emergent rescue plan before 
the natural  disasters,  such as earthquakes,  typhoons 
and floods.  The hazardous area is divided into sub-
area  by the capacity of  medical  treatments and the 
distance  between  the  habitants,  and  the  emergent 
medical station is located at the position of the seed 
of this sub-area.  When if any disaster happens, the 
wounded can be sent directly to the nearest medical 
station  and  will  accept  proper  treatments.   Such  a 
problem  can  be  formulated  as  the  so-called 
Capacitated Clustering Problem (CCP).

This capacitated clustering problem is defined as 
dividing n nodes or objects into k groups to minimize 
the  assignment  cost  and  to  satisfy  the  capacity 
constraints. The CCP is a special case of the facility 
location  problem  and  is  closely  related  to  the 
generalized  assignment  problem  [4]  and  p-median 
problem.  Garey and Johnson [5] indicated not only 
that  the  CCP  is  NP-complete,  but  also  that  exact 
optimization  integer  programming  algorithms  are 
ineffective for larger problems. 

The generalized assignment algorithm developed 
by  Fisher  and  Jaikumar  [4]  for  vehicle  routing 
ushered  in  the  use  of  the  CCP.   They  used  very 
simple heuristics to solve the generalized assignment 
problem which is a subset within the larger  vehicle 
routing  problem.   The  generalized  assignment 
problem, however,  requires  the pre-specification  of 
seed nodes that serve as clustering points.  In large 
problems,  the  choice  of  the  seed  nodes  can  be 

extremely difficult.  Algorithms for CCP, on the other 
hand,  explicitly  choose  the  seeds  as  part  of  the 
algorithm.   Mulvey  and  Beck  [12]  proposed 
heuristics  and  used  randomly  generated  seeds  as 
initial solutions for solving the CCP. Koskosidis and 
Powell [10] extended the work of Mulvey and Beck 
by proposing an iterative algorithm that was shown 
more effective for developing initial seeds.

Meta-Heuristics  such  as  the  genetic  algorithms, 
simulated  annealing  and  tabu  search  methods  have 
become  increasingly  popular  as  a  means  to  solve 
difficult  combinatorial  optimization  problems  with 
the  type  similar  to  those  in  operations  research. 
However,  there  do  not  exist  many research  reports 
using GA to solve the CCP.   Thangiah and Gubbi 
[15]  proposed  a  genetic  sectoring  method  to  find 
good  clusters  of  nodes  for  the  vehicle  routing 
problem with a "cluster-first route-second" problem 
solving strategy.  Once the clusters are identified by 
the  genetic  search,  classical  insertion  and  post-
optimization procedures  are  applied  to  produce  the 
chosen  routes.   Although  this  approach  is  able  to 
solve the CCP, it is designed on the Euclidean plane 
and may not suit the problems on the road networks 
in  real  world.   On  the  other  hand,  Osman  and 
Christofides [13] employed the hybrids of simulated 
annealing and tabu search methods to solve the CCP.

2. PROBLEM FORMULATION

The mathematical formulation shown below is the 
Capacitated  Clustering  Problem  defined  by 
Koskosidis [11].
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Where 
I : the set of habitant node, i=1,2,…N.
J : the set of candidate seed location j.
K : the number of available medical stations.
cij : the cost of traveling directly from habitant node 

i to j.
qi : the number of habitants in node i.
V : the capacity of the medical station that serves the 

cluster

Binary Variables:
yij = 1  if node i belongs in the cluster of seed j
   0  otherwise
gj = 1  if node j is a seed node for medical station
   0  otherwise

The variables yij are the assignment variables; and 
the variables gj indicate whether a candidate seed j is 
selected.   The  cost  coefficients  cij measure  the 
impedance  between a  node  i and  a  seed  j (e.g.  cij 

could be the distance between i and j or a composite 
measurement  of  distance,  travel  time,  etc.).The 
objective function of the CCP model is to minimize 
the total assignment cost of nodes to the cluster seeds.

Constraint  (2)  in the above formulation restricts 
the  number  of  nodes  assigned  to  a  cluster  (i.e.,  a 
medical station), such that the capacity of the medical 
station is not exceeded.  Constraint (3) ensures that 
each node is assigned to the one, and the only one, 
seed  j;  and  constraint  (4)  is  to  prevent  assigning a 
node  i to  the candidate  seed  j which has  not  been 
selected  as  a  seed  (in  which  case yij =0).  Finally, 
constraint  (5)  ensures  that  as  many as  K seeds  are 
chosen.

3. APPLICATION OF GENETIC 
ALGORITHMS

Holland  and  his  associates  at  the  University  of 
Michigan developed genetic algorithms in the 1960s 
and  1970s.  The  first  full  systematic  treatment  was 
contained  in  his  book  Adaptation  in  Natural  and  
Artificial System [7] published in 1975. The guiding 
premise of GA is that the complex problem can be 
solved  by  simulating  evolution  via  a  computer 

algorithm. In the original GA conception, the process 
is viewed as a black box that provides evaluations of 
chromosomes (solutions). These evaluations are then 
used to bias the selection of chromosomes in a way 
that  superior  chromosomes  (i.e.  those  with  higher 
evaluations)  will reproduce more often than that  of 
the inferior.

The application of GA to solve CCP in the study 
has the following advantages.  First, the CCP is a 0-1 
integer problem and is therefore natural to represent 
the problem by the binary coding of GA.  Likewise, 
this  discrete  feature  needs  the  least  effort  when 
decoding the chromosomes to the original problem. 
Second, the CCP is a NP-Complete problem and the 
existing solution methods are complicated, therefore 
the application of GA will be worthy if it can provide 
better solutions with less or even the least problem-
related information and knowledge. 

3.1 Coding and Decoding for the CCP

There are several ways to represent the problem 
with proper coding for genetic search, such as binary 
coding, sequential coding and k-ary coding.   In this 
study,  the  CCP  is  coded  as  binary  strings  for  the 
following two reasons.  First, the CCP is a 0-1 integer 
problem,  thus,  the  application  of  a  GA  would  be 
straightforward  to  encode  a  solution  as  a  binary 
string.  Second, during the genetic search, a binary 
string will naturally compatible with the standard GA 
operators,  i.e.  reproduction, crossover  and mutation 
and  will  not  generate  infeasible  offspring.   This 
feature will save the computing resource and make it 
easy to implement.

In  the  formulation  of  the  CCP,  nodes  are 
classified  into  clusters  according  the  set  of  seeds. 
Therefore,  the  encoded  chromosome has  to  find  a 
seed node in each cluster.  A natural  representation 
might be a chromosome with two parts: one for nodes 
and  the  other  for  seeds.   Thus,  the  developer  can 
define a  binary chromosome at  the length of  2NK, 
where N is the number of nodes and K is the number 
of available medical stations.  In the part of nodes, 

and in the part of seeds, 

Although  this  approach  is  straightforward,  it 
would  expend  a  rather  lengthy  chromosome  and 
many solutions would inevitably be infeasible.

Another approach used in this study is to define a 
chromosome at the length of aN +bK, where a and b 
are the number of binary digits to represent the nodes 
and  seeds.  Like  the  example  of  chromosome  in 
Figure 1, the genes for nodes are divided into sub-
groups for every “a” digits (in this example, a = 4). 
In  the  ith division, the binary digits are changed to 
decimal  according to  the  value  of  j.   The  j is  the 
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cluster that the ith node belongs to.  There will be at 
most 16 alternative clusters for each node when “a” 
is equal to four.  In the part of genes for seeds, every 
division of  b (five in this example) digits represents 
the position of the seed node in the cluster.   In the 
example of five digits, there are at most 32 positions 
in a cluster, therefore, it is the maximum number of 
nodes in a cluster.   Since  a and  b are  substantially 
less than N or K, we can see that aN +bK will be less 
than  2NK.   This  will  save  memory  space  and 
computing time.

0110|0011|…|…..|0110|01101|10010|…|01110|

Figure 1. Chromosome for CCP

The initial  population is  generated  randomly by 
GA.  Every chromosome of the population will be 
decoded into a solution by the way depicted in Figure 
1.  The next step is to evaluate the fitness of every 
solution in order to generate a new population.  The 
following  sections  will  describe  the  operating 
strategies to generate a new population first and then 
to illustrate the methods to find fitness value for each 
chromosome.

3.2 Genetic Operating Strategy

After  generating the initial  population,  the GAs 
apply three operators to find new populations.  In this 
study, the binary coding will be inherently compatible 
with  the  traditional  SGA  operators,  therefore,  no 
additional effort is needed to design a new operator 
for  this  problem.   However,  many  strategies  are 
applied in this study to enhance the performance of 
GA as an optimizer.

3.2.1 Reproductive Strategy

When  generating  a  new  population,  this  study 
adopts  De  Jong's  [2]  concepts  of  elitism and 
population  overlaps.  An elitist  strategy ensures  the 
survival of a best individual so far by preserving it 

and  replacing  only  the  remaining  members  of  the 
population with new strings.  Overlapping population 
take  a  stage  further  by replacing  only a  fraction  r 
(replacement  rate)  of  the  population  at  each 
generation.  Selection  schemes  also  have  to  be 
considered here.  The original roulette-wheel method 
is  chosen  here  because  it  performs  better  than  the 
other methods after empirical tests.

The  scaling  or  normalizing  of  fitness  for  the 
members  of  population  is  necessary  since  the 

objective has to be changed from being minimized to 
being  maximized.   Therefore,  a  reverse ranking 
method, i.e. a lower fitness indicates a higher rank, is 
used. 

3.2.2 Recombination Strategy

The original one-point crossover operator may not 
be the best approach for every problem. In this study, 
GA  uses  multipoint  operator,  where  n crossover 
points are chosen randomly.  

The  question of  how often crossover  should be 
applied has  been investigated experimentally in the 
literature.  De Jong's [2] experiment suggested that a 
crossover rate of 0.6 was appropriate.   Grefenstette 
[6]  proposed  0.95,  while  Schaffer  et  al.  [14] 
suggested  it  should  vary  with  population  size  and 
string  length.  After  testing  several  values,  the 
crossover rate of 1.0 is chosen in this study. 

The mutation rate that decide how often mutation 
should  be  applied  is  also  obtained  by 
experimentation.  A value of 0.02 is selected and the 
type of mutation rate is per-gene, that is, every gene 
will have the possibility of 0.02 to mutate.

3.3 Fitness Evaluation

The fitness value is composed of the value of the 
objective  function  and  the  measurement  of 
unfeasibility of the constraints.  

3.3.1 Objective function

The objective function in the equation (1) of the 
CCP model  minimizes the total  assignment cost  of 
nodes  to  the  seed  of  the  assigned  cluster.   The 
assignment cost  is  the distance of the shortest  path 
from a node  to  its  tagged  seed.   In  this  study,  the 
matrices of  the shortest  path for  every node to  the 
others  are  stored  that  the  GA  can  access  in  the 
process.  The value of the objective function is the 
basic fitness for every individual string.

3.3.2 Constraints

In  the  formulation  of  the  CCP,  the  constraints, 
from (2) to (5), must be included to obtain feasible 
solutions.  Because of the genetic coding method of 
the  CCP  as illustrated  in  Figure  3,  most  of  these 
constraints are conformed inherently.   For instance, 
the constraint (3), i.e. each node has to be assigned to 
the  only  one seed,  is  satisfied automatically by the 
genes  of  nodes.  The constraint  (4)  that  ensures the 
assignment  of  a  node  to  a  selected  seed  is  not 
necessary here,  because  the  genes  of  seeds  always 
assign  a  seed  for  each  cluster.   Similarly,  the 
limitation of k seeds in constraint (5) is satisfied since 
the genes of seeds are decoded as many as k seeds.

Only  the  constraint  (2)  that  the  accumulated 
volume in each cluster should not exceed the capacity 
of the medical station has to be handled separately. 
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This  constraint  cannot  be  satisfied  by  the  coding 
string  inherently  and  must  be  done  with  other 
methods.  In  this study,  we use the penalty method 
because  it  needs  less  modification  and  is  easy  to 
implement.

3.3.3 Adaptive Penalty Function Method (APF)

In fact, much experience in literature shows that a 
naïve attempt to use penalty function often fail.  If the 
penalty  is  too  small,  many infeasible  solutions  are 
included to propagate; if the penalty is too large, the 
search is confined to the interior of the search space 
and  far  from the  boundary  of  the  feasible  region. 
Note that it is common to find the global optimum on 
or near a constraint boundary.

To  address  this  kind of  failure,  Fairley [3]  and 
Coit,  Smith and  Tate  [1]  suggested using  adaptive  
penalty  functions in  such  situations.  This  study 
adopts the proposal by Coit et al. [1].  The rationale 
of this method is that moderately infeasible solutions 
will lie near the feasibility boundary and close to the 
optimal solution.  The penalty function allows some 
unfeasibility,  because  the  infeasible  solutions  have 
the  potential  to  recombine  or  mutate  to  produce  a 
near  optimal  solution.  The  fitness  after  being 
penalized  by  the  capacity  constraint  (2)  is  derived 
from the following equation.

Fp(x)  =  F(x)  +  (Ffeas -  Fall) ck

cNFT
Capacity )( ∆

(8)
Fp(x) : penalized objective function (fitness).
F(x) : unpenalized  objective  function  value  for 

solution x.
Ffeas : the best feasible solution value yet found.
Fall : the unpenalized value of the best solution  

yet found.
∆Capacity:  the  excessive  amount  for  capacity  

constraint.
NFTc : Near-feasible  threshold  for  capacity  

constraint.
kc : user  specified  severity  parameter  for  

capacity constraint.

The  penalty  function  will  encourage  GA  to 
explore  within  the  feasible  region  and  the  NFTc  

neighborhood of the feasible region, and discourage 
search beyond that threshold. The  NFTc could be a 
static  constant  or  a  dynamic  searching  parameter 
changed  as  a  function  of  generation  number.  This 
study applies the following equation to decrease the 
value of NFTc as the algorithm progresses.

NFTc = NFT0  / Generations (9)

The NFT0 is some upper bound for  NFTc.  Coit et al. 
[1] point out that the definition of  NFTc is not only 
problem specific, but also constraint specific.  This 

study will show how the NFTc, or actually the NFT0, 
affects the performance of the algorithm in the next 
section of computational analysis.

3.5 Stop rules

Generally, the designated number of generation is 
often  the  signal  to  stop  the  algorithm.  The  other 
approaches might use a measure of convergence that 
requires the difference of the best fitness between two 
generations is less than a specified constant.  Another 
stopping rule is to apply a target  value to stop the 
algorithm.  In this study, the number of generation is 
the major rule to stop the algorithm, and the target 
value  is  applied  if  other  solution  algorithm  gives 
some lower bound. 

3.6 Using SUGAL

SUGAL  [soo-gall]  is  the  SUnderland  Genetic 
Algorithm package, developed by Dr. Hunter at the 
University of Sunderland, England.  It  is a package, 
written in 'C' language, designed for experimentation 
with GA and related techniques [8, 9].  The package 
is employed to perform a GA research and provides a 
large  number  of  options  on  configurations  and 
extendibility. This feature enables the researchers to 
evaluate  different  operation  strategies  easily. 
Another major feature of the SUGAL is that the user 
needs only to  provide  a single C procedure,  which 
can  evaluate  the  fitness  of  a  chromosome,  and  a 
simple main procedure, which hands over control to 
the SUGAL code. Although the user still has to write 
some computer codes, he will not have to intervene in 
the coding of other genetic operations and can focus 
on finding better solutions.

In the following computational study, the SUGAL 
is applied to solve the CCP according to the string 
coding, operational  strategies and fitness evaluation 
methods  that  have  been  described  in  the  above 
sections.  

4. COMPUTATIONAL STUDY
In this section,  the major objective is to evaluate 

the quality of solutions and computing efficiency of 
the  proposed  GA  methods,  and  to  compare  the 
adaptive  penalty function  with different  parameters 
each other. 

The  testing  network,  which  has  103  nodes  and 
167 arcs, is the output from the map of Chung-Li City 
that is digitized by GIS software, Arc/Info.  The set 
of  habitant  nodes  are  chosen  randomly  from  the 
existing road network. Every node has a number of 
the  network  and  the  amount  of  habitant  around  it. 
Every arc  of  the  network  has  two cost  categories. 
They are the functional values of the corresponding 
arc length and traffic volume.  The two kinds of cost 
categories  represent  the  lengths  of  the  arc  in  both 
directions and may be different to each other.   The 
matrix of shortest  path for  every candidate node is 
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derived from this real road map and is saved as files 
that the GA can access it during the process.  Table 1 
lists the characteristics of the seven problems ..

Table 1. Characteristics of the first problem set
Prob

.
No. of nodes Medical 

Capacity
Total habitants

1 28 100 420
2 41 100 810
3 41 100 810
4 41 100 1220
5 41 230 1076
6 55 230 1279
7 46 100 1088

4.1 GA

This  study  applies  SUGAL  to  perform  the 
proposed GA methods.  Since most of the problem-
related processes, such as the chromosome decoding 
and fitness evaluation, are still controlled by the user, 
using  SUGAL  is  not  quite  different  from  the 
traditional  way  that  the  user  programs  all  the 
functions of the GA.  In fact, a user can save time for 
program coding and try a good many of options to 
find the best way to apply the GA to solve a specific 
problem. 

Some of the parameters are problem-specific such 
as a random seed and the chromosome length.  The 
parameters that are common for every test problem 
are listed in Table2.

The improving directions of the GA for solving 
the CCP are to reduce the cost of assignment without 
violating the capacity constraint.  In order to enhance 
the  convergent  speed  and  performance  of  the 
algorithm,  the  APF  method  is  employed  in  two 
alternatives.  The first, denoted as APF_1, has added 
the severity parameter kc = 2 and assign the fitness a 
large  constant  penalty  P if  this  chromosome  is 
infeasible  to  capacity  constraint.   This  approach 
encourages the GA to search more solutions that are 
feasible and decreases the possibility of the inclusion 
of infeasible ones.

Table 2. Common values of control parameters
Parameters Value Parameters Value
Annealing decay 1.0 Mutation rate 0.02
Bias 2 Normalization Reverse_
Crossover type Npoint rank_
Crossover points 15 linear
Crossover rate 1.0 Population 80
Elitism On Replacement

condition
Anneale
d

Mutation  Invert Replacement 
rate

0.7

Mutation 
rate type

Per_gene Replacement 
Selection

Ranked
Roulette

Another  approach  (APF_2)  has  the  severity 
parameter kc = 3.  This is simply an execution of the 

equation  (8).   Therefore,  some infeasible  solutions 
are  encouraged  to  reproduce  and  the  best  fitness 
chromosome in  a  generation  may be  an  infeasible 
solution.   The  solutions  found  by  these  two 
approaches are described in Table 3.

Table 3. Results of GA for the first problem set
Prob Groups APF_1 APF_2

1 5 967.85 806$

(2110,105)%
959.30 2358

(2110,104)
2 11 1125.47 4324

(2110,105)
1106.6 5410

(2110,100)
10 1171.70 6747

(1, 104)
1180 19484

(2110, 1000)
9 1550.2 25506

(1110, 105)
1404.32 27300

(110,2000)
3 10 1492.7 8610

(2110, 105)
1230.60 27824

(1110,1000)
9 1531.0 6151

(5, 106)
1572.13 1488

(2110, 1000)
4 16 865.25 22643

(110, 106)
836.899 1950

(110, 104)
5 5 1816.16 2515

(5,105)
1783.79 8660

(5, 104)
6 7 1818.63 3376

(2110,104)
1849.13 6704

(110, 1000)
6 2253.28 8667

(5, 104)
2238.81 1224

(5, 1000)
7 13 1492.0 4625

(1234, 106)
1386.51 8986

(2110, 5000)
Objective Value %(Random seed, NFT0)
$The number of generation that this solution is generated

The  results  presented  in  Table  3  include  the 
values of the objective, random seeds,  NFT0 and the 
number of generation that the best solution appears. 
The computing time in a Pentium 133 PC is about 10 
minutes for every 10,000 generations.  Most of the 
acceptable  solutions  are  obtained  within  10,000 
generations.   The  results  indicate  that  the  APF_2 
finds better solutions in most of the cases.  However, 
neither of the two methods is always superior to the 
other in the convergence speed.  The mechanism of 
improving  convergence  speed  in  APF_1  possibly 
leads to limit on a narrow range of search space that 
the algorithm may fail to find better solutions.  The 
profiles  of  convergence  for  APF_1  and  APF_2  in 
problem 1 are depicted as in Figure 2.
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Figure 2. Comparison of APF_1 and APF_2 for 
problem 1.
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The  problem-specific  parameter,  NFT0,  affects 
both of the convergence speed and solution quality. 
When  the  NFT0 is  small,  the  algorithm converges 
quickly  and  is  prone  to  become  premature 
convergence.  On the other hand, when the  NFT0 is 
large,  the  algorithm  will  search  widely  in  the 
exploration  phase  to  find  better  solution  and  may 
converge slowly.  The performance of different NFT0 

for problem 1 is compared in Figure 3.  

The effects of different random seeds are shown 
in  Figure  4.   Ten  continuous  seeds,  from 2106  to 
2115,  are  evaluated with problem 1 by the penalty 
function of APF_2 and the average fitness is about 
1115.54.   We  can  see  that  the  performance  of 
different  seeds  is  steady in  general  except  for  two 
cases  and  the  solutions  converge  within  10,000 
generations
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Figure 3. Comparing different NFT0 for problem 1.
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Figure 4. Comparison of ten continuous seeds for 
problem 1 with NFT0 = 10,000.

Figure 5.  The location of medical stations and 
habitant nodes for test problem 1

The best result of test problem 1 is drawn as in 
Figure  5.  There  are  28  habitant  nodes  and  five  of 
them are chosen to be the medical stations.    Each 
habitant node has been assigned to a medical station 
that will have enough capacity and has the minimum 
total distance. 

5.3 LINDO

A hyper version of LINDO, which can handle the 
problems within 4000 integral variables, 2,000 rows, 
4,000 columns and 64,000 non-zero items, is used to 
obtain the 0-1 integral solution of the CCP.  Since the 
LINDO  uses  the  branch  and  bound  algorithm,  the 
final solutions should be the optimal results and they 
can  be  supplied  as  benchmarks.  However,  only 
problems 1 and 5 achieve the final optimal results. 
There are 812 integer variables and 841 constraints in 
the  problem  1.  LINDO  obtains  the  optimum  at 
1,799,391 pivots and ends at 2,049,575 pivots after 
the computing time about three and a half-hour on a 
Pentium 133  PC.   The  problem 5  takes  about  six 
hours.  The other problems can not achieve the final 
optimal  solutions  after  several  times  of  re-
computation.  The  temporary  solutions  are  taken  as 
the  answers.   Problems  6  and  7  have  too  many 
constraints  to  be  solved  by  this  LINDO  hyper 
version.  The  results  are  shown  at  the  column  for 
LINDO in Table 4.

Most of the solutions from GA are very close to 
the results of LINDO. In problem 1, the solution from 
GA is nearly the same as the optimum solution from 
LINDO.  Only  two  nodes  are  clustered  in  two 
different  groups.   Furthermore,  the  coding  of  a 
chromosome allows the GA to derive solutions with 
the number of medical stations as desired. Therefore, 
evaluating  the  feasibility  of  using  fewer  medical 
stations  is  relatively  easy.   Although  using  fewer 
medical  stations  implies  a  more tightly constrained 
problem, the GA results, which using fewer medical 
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stations,  are  still  competitive  with  the  results  of 
LINDO as demonstrated in Table 4.

Table 4. Results comparison of the first problems set
Prob Groups Best of GA LINDO

1 5 959.30
#0.0001%

959.299

2 11 1106.6
10.24%

*1003.85

10 1171.70
2.54%

*1142.72

9 1404.32
4.7%

*1341.24

3 10 1230.6
-0.8%

*1241.40

9 1531.0
7.38%

*1425.71

4 16 836.899
12.1%

*746.74

5 5 1783.79
5.7%

1686.83

6 7 1818.63 +N.A.
6 2238.81 N.A.

7 13 1386.51 N.A.
Objective Value
# Percent deviation from LINDO solution.
*LINDO does not end with an optimal solution.
+The solution is not available, because this version of 

LINDO can not solve this problem.

6. CONCLUSION
This study applies a genetic algorithm to solve the 

capacitated clustering problem by a general-purpose 
GA program library, SUGAL.  In the computational 
study, severn test problems are solved to evaluate the 
performance of the proposed GA method.  The binary 
coding for this problem does not require modifying 
the  genetic  operators,  and  can  inherently  consider 
most  of  the  constraints.  Experimental  results 
demonstrate that an adaptive penalty function applied 
to handle the capacity constraint can effectively guide 
the search direction.  These two approaches enhance 
the solution quality and computational efficiency of 
GA for solving the CCP.  Experimental results further 
demonstrate that the solution quality of GA is very 
competitive with LINDO and the computational time 
is significantly less than LINDO.  

In  this  study,  the  derived  locations  of  medical 
stations have the minimum total assignment distance 
to  each  habitant  node.   However,  another  critical 
factor  should  be  the  travel  time from any habitant 
node to the medical stations. The further study might 
use the objective function of travel time and adds one 
more  time  constraint  for  each  node. 
Correspondingly,  the  emergency evacuation  plan  is 
another  similar  problem  and  deserves  further 
attention.

The CCP model can also be extended further.  In 
equation (1)  of  the CCP formulation,  the objection 

function does not consider the marginal cost of using 
more  medical  stations  (groups).   Therefore,  the 
objective  value  may  be  lower  if  more  medical 
stations  are  available.   Further  studies  should 
consider  the  total  cost  of  the  facility  and  the 
assignment  cost  to  simultaneously  determine  the 
number of clusters and the members within a cluster. 
Modifying the model proposed herein can be easily 
achieved by adding the medical stations cost to the 
objective function, or one more penalty for the use of 
more medical stations.
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