
OBJECT-ORIENTED CONSTRUCTION SCHEDULING

Su-Ling Fan1 and Ming-Teh Wang2

1 Ph.D. Student, Department of Civil Engineering, National Taiwan University
2 Associate Professor, Department of Civil Engineering, National Taiwan University

Abstract: Current network techniques presume that there is only one logical sequence of the
activities in a project, therefore planners need to choose one particular logical sequence of
the activities even if there is more than one possible sequence. This may request engineers
expend many work hours to update the variable relationships between activities to keep a
meaningful schedule, which effectively controls the progress of a project. This paper
discusses the logic changes during the course of delivering the project. An object-oriented
algorithm and computer system, called OERT and OERTSS respectively, have been
developed to automatically update the logic changes providing the impact of logic change
on the project completion date and the critical path thereby reflecting the progress of the
project faster.

Keywords: logic changes, scheduling, object-oriented.

INTRODUCTION

As the complexity of a construction project increases,
the need for planning and schedule control becomes
more important. Network techniques have become
the most widely used ones for project scheduling and
control in construction fields over the last few
decades.

Current network techniques presume that there is
only one logical sequence of the activities. However,
in reality there is sometimes more than one possible
sequence of these activities. This alternative logic
was termed ”soft logic” by Tamimi and Dichmann in
1988[12]. Current models do not differentiate
between two types of logic; therefore planners need
to choose one particular logical sequence of activities
based on some original assumptions. Throughout the
duration of a project, it is often necessary to modify
logic relationships between activities in order to
maintain an established completion date. As the
complexity of a construction project increases, the
associated need for updating increases, and the
procedures become quite complex and time
comsuming. This creates problems when the planner
is unable to update changes fast enough for the field
personnel and schedule control. In this paper the
problem is said to be a soft logic problem.

The paper first discusses some important resutls of
past research, followed by proposed solutions with
the idea of using an object-oriented approach.

PAST RESEARCH

Many techniques have been developed for planning,
scheduling, and monitoring construction projects. Bar
charts and similar types of graphical displays are
excellent tools for displaying schedule analysis. They
are easy to prepare and review as compared to some
other scheduling techniques. One of the main
drawbacks of Bar charts type techniques is their
inability of explicitly capturing the relationships
between activities.

Critical Path Method (CPM) has been widely used as
project planning tools in the construction industry.
The explicit representation of activity relationships is
one of its main advantages. However CPM does not
deal effectively with repetitive cycles, randomness
and probabilistic estimates, and network branch
decision-making[8, 11].

The Line of Balance (LOB) scheduling technique is
aimed at modeling repetitive construction projects
and has been used since the 1950s. LOB is based on
production curves. The slope of curve relates to the
increase in units of production on the y-axis with the
increment of time on the x-axis. The LOB technique
shows the impact of delays on a specific activity, but
not on the completion date of the project[1, 13]. To
overcome the limitations as mentioned above,
researchers have attempted to integrate LOB and
CPM, (e.g., Schoderbek and Digman 1976； Rahbar
and Rowing 1992 ； Russell and Wong ； Suhail
1993)[11, 13].

PERT, the Monte Carlo Simulation Approach
(MCSA) and probability networks, such as GERT, Q-
GERT, R-GERT, P-QERT and VERT provide a
more accurate representation of the duration of an

196_TD3.doc- 1 -

activity than a CPM network [3, 7, 9]. Unfortunately,
the soft logic problem remains unsolved. Although
probabilistic networks provide a new method for
capturing network branch decision making and loops
in the logic, soft logic cannot be represented
accurately within the probabilistic networks.

Tamimi and Diekmann termed the logic existing
between the activities that are technically
independent as “soft logic” in 1988[12], meaning
those “interchangeable activities” could be
accomplished at one time. However external factors,
such as limited resources, may result in a limitation of
total number of activities that can be done at one
time. They developed a microcomputer program,
SOFTCPM, to deal with the soft logic problem. Each
interchangeable set of activities must be distinguished
from the regular (non-interchangeable) activities in
the SOFTCPM model. Each set of activities can
consist of several subsets, and the number of subsets
should equal the total number of activities that can be
performed simultaneously. When the user specifies in
a single data entry transaction which activity he wants
to start, the SOFTCPM program performs an activity
rearrangement (called topological transformation) by
checking the following three requirements. First, the
activity belongs to a certain set. Second, all its
prerequisites must be completed; and third, there is at
least one subset in which none of the activities is
currently in progress. SOFTCPM has the advantage
over previous techniques in providing a simplified
updating procedure with minimum data entry.
However, the requirement of making the number of
subsets equal the total number of activities being
performed simultaneously allows the model to only
represent a very limited type of soft logic problems.
Furthermore, the model performs topological
transformation only on the activities that belong to
the set that contains the activity which the user wants
to start, but does not rearrange other sets of activities
which may produce invalid schedule logic.

In 1992, Amr El-Sersy subdivided soft logic into
three subtypes: SOFT, OR, and EXCLUSIVE-
OR[13]. SOFT refers to the logic existing between
the activities that can be scheduled either
simultaneously or reversibly. OR refers to the logic
existing between the activities that can be scheduled
simultaneously, but not reversibly; while
EXCLUSIVE-OR refers to the logic existing between
the activities that can be scheduled reversibly, but not
simultaneously. In practice, the later two subtypes of
soft logic only exist in some very restricted cases
with particular design or construction criteria. This
paper adopts the definition of soft logic by Tamimi
and Diekmann.

Amr El-Sersy also developed a SERSI model which
generates possible alternatives to assumed schedule

soft logic and constrains the generation of
alternatives with three different user objectives:
reducing project completion time, increasing network
flexibility, and improving resource profile.

The SERSI model makes schedule updating easier
and less time-consuming by providing users with the
alternatives that satisfy the objectives. In order to
prevent the problem of SOFTCPM, not rearranging
other sets of activities that may make it produce
invalid schedule logic, the SERSI model includes
Dependency Fixed (DF) relationships. It forces the
SOFT links from its follower activities to have the
same states as the SOFT links from their predecessor
activities. However, it might produce invalid logic as
well. As an illustration shown in Fig. 1, link 300, 400,
and 500 are termed as DF links which ensure that link
100 and 200, (101 and 201, and 102 and 202) have
same state so that if activity “Excavation Area B”
precedes activity “Excavation Area A”, then activity
“Set Forms Area B” will precede activity “Set Forms
Area A.” Providing two excavation crews and one
carpenter crew, the link 100 should be ignored, but
link 200 should not be ignored. Thus, in this case,
SERSI will produce invalid logic too.

Excavate
Area A

Excavate
Area C

Excavate
Area B

Set Forms
Area A

Set Forms
Area C

Set Forms
Area B

300

100 102

202200

201

101

400 500

Figure 1. Example of Interdenpdent Soft Links

THE OERT Model

This paper proposes a model called OERT（Object-
oriented Evaluation and Review Technique）, which
utilizes the object-oriented modeling to deal with the
soft logic problem.

Object-oriented modeling is a new way of problem
solving for the abstraction problems that exists in the
real world. Its fundamental construct is the object,
which combines both data structure and behavior in a
single entity. This is in contrast to conventional
programming where data structure and behavior are
only loosely connected. The object model
encompasses the principle of abstraction,
encapsulation, modularity, hierarchy, typing,
concurrency, and persistence. Object-oriented
modeling has been recognized for being able to bring
benefits such as reusability, stability, reliability, faster
design and programming, easier maintenances and
etc[4, 6, 10].

196_TD3.doc- 2 -

The OERT model classifies the schedule logic into
two types, fixed and soft. Fixed logic is the logic that
exists between the activities which have one possible
logic sequence due to physical constraints. Soft logic,
as defined by Tamimi and Diekmann, is the logic
existing between the activities which are technically
independent and can start simultaneously in theory,
but due to external factors, such as limited resources,
may result in a limitation of total number of activities
that can be done at one time.

In the OERT model, each activity is modeled as an
object, which will be described by its attributes and
behave according to its methods (or functions as
termed in procedure programming paradigm). At
first, the user defines the sequence of activities with
fixed logic as network technique, and the activities
with soft logic are grouped into a set. On the other
hand, each activity in a set is given a priority number
according to the users’ preference or random
assignment. During the schedule-generating phase,
OERT establishes the relationship between the
activities in the set automatically with the algorithm
of finding out the precedence activity of soft logic
with the given total number of activities that can be
accomplished at one time. The total Number of
Activities that can be accomplished at One Time is
referred as NAOT). OERT produces project duration,
early and late dates, float time, and critical path
automatically as well. During updating phase, with
the input of actual dates and the new NAOT (if the
external factors have been changed), OERT
rearranges the sequence automatically to keep the
schedule workable, and gives the early and late dates,
float time, and critical path to reflect the impact of
logic change on project completion date and on the
critical path.

To find out the precedence activity of soft logic
named “Soft Precedence Activity (SPA)”, an activity
calculates the maximum date of early finish of its
prerequisites, named as “Fixed Early Start (FES).” It
then compares its FES with the FES of each activity
in the same set. If NAOT equals one, the activity in
the same set that has an equal FES with a higher
priority (a smaller priority number) is the SPA,
otherwise the activity whose FES is the latest one
among the ones earlier than the FES of the activity of
the course is the SPA. If the NAOT is more than one,
the SPA found by the previous method is put in the
list of the SPA candidates, then the activity object
will ask the SPA to find out its SPA with the same
method. The SPA found is then listed as an SPA
candidate. This method will be repeated till the
number of activities of the SPA candidates equals the
NAOT, and the real SPA is the one where the fixed
early finish (FEF) is the smallest within the
candidates. Figures 2, 3, 4 and 5 show the complete
algorithm of finding the SPA of an activity.

Temp = 0
SPA=NULL

Activity-I is finished

Yes

figure 3No

Activity-j is finished
and

isn't SPA of any activity

Yes

ActalFinshj < ActalStarti
 and

AFj >Temp

Temp = AFj
SPA =activity-jYes

next activity-j

No

activity-j is the last one in
the set

return SPA

Yes

No

No

from first activity in the set
(acitvity j)

Figure 2. Finding the SPA of activity I (A)

Yes

Yes

TempP = Priority o f
A citvity i

TempES = SPAi
Q ueue.Count = 0

from Ctem p0 =1 to NAO Ti

from first activ ity in the same set
(A ctiv ity j)

Activity-j isn't finished
and isn 't SP A of any

activity

FESj = TempES
a nd

Priorityj < TempP

FESj < TempES

Priorityj > Temp2P

FES j = Temp2P FESj > Temp2ES

Pj > C TempES.P Temp2ES = FESj
CTempES = a ctiv ity-j

Te mp2P = Priority j
C TempP = ac tivity-j

next activity-j

ac tivity-j is the last
one in the set

C Tem pP =N ULL

CTempES =N ULL

add C TempP into Queu e
TempP = CTempP .P

Temp ES = CTempP.ES 1

add C TempES into Queue
TempP = CTempES.Priority
TempES = C TempES.FES

Temp0 =Temp0 + 1Temp0 < NAO T+1

figure 4

Y es

Yes

Yes

Y es

Y es

Y es

N o

Yes

figure 5

Yes

N o

Yes

No

No

No

No

Yes

Figure 3. Finding the SPA of activity I (B)

196_TD3.doc- 3 -

TempMinEF = Maximum Duration
TempP = 0

from first activity-k to
last activity-k in the Queue

FEFk = TempMinEF FEFk < TempMinEF

TempMinEF =FEFk
TempP =Pk

SPA = activity-k
Priorityk < TempP

next activity-k

activity-k = NULL

return SPA

No

Yes

No

Yes

Yes

Yes

NONo

Figure 4. Finding out SPA of activity I (C)

SPA =NULL
Temp = 0

activity-j is finised
and

isn't SPA of any activity

from first activity-j to last activity-j

AF > Temp

SPA= activity-j
Temp = AFj

activity-j is the last one in
the set

next activity-j

return SPA

Yes

Yes

No

Yes

No

Figure 5. Finding the SPA of activity I (D)

4. COMPUTER IMPLEMENTATION

The OERT model’s implementation named as
OERTSS (Object-Oriented Evaluation and Review
Technique Scheduling System) is facilitated by MS
Visurla C++ with its MFC (Microsoft Foundation
Class library). Figure 6 shows the main framework of
OERTSS.

My System

My Document

Main Frame Window

Status Bar

Network
 Window

Toolbar

Activity
¡]First Layer¡^

Object Container

General Information
Dialogue Box

Remain Duration
Dialogue Box

View

Critical Path Window
Document Template

Total Duration
Window

Criticla Path
Window

Remain Duration
Confirmation
Dialogue Box

Lag Dialogue Box

Activity

Actual Dates
Dialogue Box

Project End Day
Dialogue Box

Figure 6. Framework of OERTSS

OERTSS has the following six menus: File, View,
Input, Delete, Window, and About. The “File”,
"View”, “Window” and “About” menus are similar
to most window system with providing file open,
close, save functions, etc. The “Input” menu provides
functions for inputting the information of activities
such as activity code, description, duration, fixed
precedence activities, and activities in the same set,
the NAOT, remaining duration, actual dates, etc.
After input, OERTSS automatically generates project
completion date, early and late dates, float time, and
critical path as shown in Figures 7, 8, and 9.

Figure 7. The table window of OERTSS

196_TD3.doc- 4 -

Figure 8. The network window of OERTSS

Figure 9. The record of project completion date

EXAMPLE PROJECT

An example is provided to clarify the capability of
OERTSS. Assume that a project consisting of five
floors is to be constructed. Table 1 shows the project
description during the stage of interior finishing.
There are 5 primary categories of interior finishing.
The NAOT of each category is one. Only 5, 2, and 1
floors require column and wall chipping. After input,
OERTSS automatically generates project completion
date, early and late dates, float time, and critical path
as shown in Figures 7, 8, and 9.

When the external factors have been changed, for
illustration, if there is 1 more crew of the wall & floor
finishing, and there are 2 subcontractors of piping. 5
and 4 floor is one subcontract, 1 to 3 is another
subcontract. The user only needs to change the
NAOT of the wall & floor finishing changed from 1
to 2, and 5 and 4 floor piping location arrangement is
1 set, and 1 to 3 piping location arrangement is
another set. The logic changes are updated
automatically. As figure 10 shows the updated
analysis result after the modification, the project
duration is reduced to 110 days.

.

Figure 10. The record of project completion date

Figures 11 and 12 show the critical activities before
and after the modification, respectively. As shown in
these 2 figures, activity 8, “3 floor wall & floor
finish,” does not remain on the critical path, and
activity 13, “4 floor Drywall first layer,” became a
critical activity.

Figure 11. Critical activities before the modification

Figure 12. Critical activities after the modification

196_TD3.doc- 5 -

6. CONCLUSIONS

Changes in network logic may cause significant
overrun in project duration. These changes occur
frequently in the networks that have soft logic
problems. In order to keep the network up to date,
many man-hours have to be spent when using current
scheduling models. This paper proposes an object-
oriented model, called OERTSS, to provide
simplified procedures with very minimum data entry.
Important logic changes will be updated immediately
to reflect the impact on a project completion date and
on the critical path of the project.

REFERENCES

[1] Al Sarraj, Z.M., Formal Development of Line-
of-Balance, Journal of Construction Engineering
and Management, ASCE, Vol. 116. No.4, pp.
411-424, (1990).

[2] Amr Hassen Ezzat El-Sersy, An Intelligent Data
Model for Scheduling Updating, Ph.D.
Dissertation, University of California, Berkeley,
CA, (1993).

[3] Back, W.E., and Bell, L.C., Monte Carol
Simulation as Tool for Process Reengineering,
Journal of Management in Engineering, ASCE,
Vol. 11, No.5, (1995)

[4] Booch Grady, Object Oriented Design with
applications, Benjamin/Cummings, (1991).

[5] Carr, M.I. and Meyer, W.L., Planning
Construction of Repetitive Building units,

Journal of Construction Division., ASCE, Vol.
100, No.3, pp. 403-412, (1974).

[6] Coad Peter and Yourdon Edward, Object-
Oriented Analysis, Prentice-Hall, (1991).

[7] Crandall, K.C. Probabilitic Time Scheduling,
Journal of the Construction Division, ASCE, Vol.
102, CO4, pp.415-423, (1995).

[8] Jafari A.K,. Criticism of CPM for Project
Planning Analysis, Journal of the Construction
Division, ASCE, Vol.110, No.2, pp. 196-214,
(1984).

[9] Nader N. Chehayeb and Simaan M. AbouRizk,
Simulation-Based Scheduling with Continuous
Activity Relationships, Journal of Construction
Engineering and Management, ASCE, Vol. 124.
No.2, pp. 107-115, (1998).

[10] Rumbaugh James, et.al., Object-Oriented
Modeling and Design, Prentice-Hall, (1991) .

[11] Russel, A.D., and Wang, W.C.M., New
Generation of Planning Structures, Journal of
Construction Engineering and Management,
ASCE, Vol. 119. No.2, pp. 196-214, (1993)

[12] Samer Tamimi and James Diekmann, soft
logic in network analysis, Journal of Computing
in Civil Engineering, ASCE, Vol. 2, No.3, pp.
289-330, (1988).

[13] Suhail Saad A., and Neale Richard H., CPM /
LOB : New Methodology to Integrate CPM and
Line of Balance, Journal of Construction
Engineering and Management, ASCE, Vol.120,
No.3, pp. 667-684, (1994)

196_TD3.doc- 6 -

Table 1 Project description during Interior finishing
Code Description Duration The

upper
layer

Fixed
Precedence

activity

Activity of
the same set

NAOT Priority

1 Column & wall chipping

2 5 floor column & wall chipping 3 1 3,4 1 1

3 2 floor column & wall chipping 2 1 2,4 1 2

4 1 floor column & wall chipping 3 1 2,3 1 3

5 Wall & floor finish

6 5 floor wall & floor finish 12 5 2 7,8,9,10 1 1

7 4 floor wall & floor finish 8 5 6,8,9,10 1 2

8 3 floor wall & floor finish 15 5 6,7,9,10 1 3

9 2 floor wall & floor finish 8 5 3 6,7,8,10 1 4

10 1 floor wall & floor finish 10 5 4 6,7,8,9 1 5

11 Drywall first layer

12 5 floor Drywall first layer 14 11 6 13,14,15,16 1 1

13 4 floor Drywall first layer 8 11 7 12,14,15,16 1 2

14 3 floor Drywall first layer 14 11 8 12,13,15,16 1 3

15 2 floor Drywall first layer 6 11 9 12,13,14,16 1 4

16 1 floor Drywall first layer 10 11 10 12,13,14,15 1 5

17 Piping location arrangement

18 5 floor piping location arrangement 11 17 12 19,20,21,22 1 1

19 4 floor piping location arrangement 8 17 13 18,20,21,22 1 2

20 3 floor piping location arrangement 10 17 14 18,19,21,22 1 3

21 2 floor piping location arrangement 15 17 15 18,19,20,22 1 4

22 1 floor piping location arrangement 10 17 16 18,19,20,21 1 5

23 Drywall 2nd layer 11

24 5 floor Drywall 2nd layer 13 23 18 25,26,27,28 1 1

25 4 floor Drywall 2nd layer 8 23 19 24,26,27,28 1 2

26 3 floor Drywall 2nd layer 12 23 20 24,25,27,28 1 3

27 2 floor Drywall 2nd layer 7 23 21 24,25,26,28 1 4

28 1 floor Drywall 2nd layer 10 23 22 24,25,26,27 1 5

196_TD3.doc- 7 -

	2 Associate Professor, Department of Civil Engineering, National Taiwan University
	INTRODUCTION
	PAST RESEARCH
	THE OERT Model
	4. COMPUTER IMPLEMENTATION
	EXAMPLE PROJECT
	6. CONCLUSIONS
	REFERENCES

