
SOFTWARE ARCHITECTURE FOR COOPERATIVE BUILDINGS

Dr. Klaus Bergner, Andreas Rausch, Marc Sihling, Alexander Vilbig
Chair for Software & Systems Engineering, Department of Computer Science
bergner@in.tum.de, rausch@in.tum.de, sihling@in.tum.de, vilbig@in.tum.de

Katja Popp
Chair for Building Realization and Computer Science, Department of Architecture

katja.popp@bri.arch.tu-muenchen.de

Thomas Reicher
Chair for Applied Software Engineering, Department of Computer Science

reicher@in.tum.de

Technische Universität München, Arcisstraße 21, 80333 Munich, Germany

In this paper, we propose an overall software architecture for the application domain of cooperative buildings.
Based on an analysis of the predominant functional requirements, we develop a business-oriented conceptual
framework, establishing a common understanding of a cooperative building’s entities and their relations. The
framework is then mapped to an abstract technical software architecture with suitable system components and
interactions. The resulting overall architecture provides a unifying high-level model of the various existing tech-
nical infrastructures for cooperative buildings, upon which interoperable solutions may be constructed.

Keywords: cooperative buildings, software architecture, business-oriented framework, componentware

1 INTRODUCTION

For years, market analysts have predicted substantial
growth in the area of building automation, as all
kinds of buildings and their inhabitants may benefit
from advances in information technology. Integrated
communication and monitoring facilities for build-
ings and so-called “intelligent” devices may raise the
standard of living for end users, for example, by
adjusting automatically to the preferences of their
users. Furthermore, they open up new possibilities
for optimizing aspects like maintenance costs and
energy consumption.

However, existing approaches for cooperative build-
ings have not been very successful yet. Although
individual devices as well as complete home auto-
mation systems are already available on the market,
they are not employed by most people due to various
restrictions. Important drawbacks are the incompati-
bility between products of different manufacturers,
the need for skilled experts to install or even use
them, or the costs associated with purchase and
maintenance. Clearly, there is a need to develop
standardized, interoperable, easily usable, and con-
siderably cheaper products in the area of building
automation.

A comprehensive software architecture represents a
key factor for the successful integration and stan-
dardization of information and building technology.
It implies a level of abstraction well above technical
details of individual communication networks and
mechanisms, thus enabling the design of general,
interoperable mechanisms based on reusing existing

components. The software architecture proposed in
this paper consists of two main parts: an abstract
business-oriented model and a technical software
architecture.

The business-oriented model presented in Section 2
is not tied to a certain technical infrastructure. In-
stead, it may be mapped onto different implementa-
tion platforms, as long as the resulting technical ar-
chitecture fulfils the given non-functional require-
ments. This separation of business-oriented issues
from technical issues raises the clarity of the design
and allows to reuse the business model even if the
underlying technology changes [BRSV98]. In par-
ticular, it captures the core concepts of the coopera-
tive building domain, like ‘device’, ‘location’, or
‘service’, and allows to model the relations between
these entities at an abstract level.

Section 3 presents a technical software architecture
that employs the proposed business-oriented model
to describe and realize system functionality offered
as services to the inhabitants of a building. It pro-
vides a decomposition of the system into components
and defines the necessary interaction protocols, for
example when installing a new device in the build-
ing. We propose a layered organization of the archi-
tecture with clear abstractions and interfaces between
application level, framework services, and communi-
cation infrastructure. This kind of architecture makes
it possible to exchange technical solutions on each
individual level, thus leveraging the benefits of het-
erogeneous, vendor-independent systems.



Finally, a short conclusion summarizes the main
results of the paper.

2 FUNCTIONAL REQUIREMENTS AND
BUSINESS-ORIENTED MODEL

In this section, we first identify the essential func-
tional requirements for systems within a cooperative
building. Based on this, we present an abstract busi-
ness model of the corresponding system entities.

2.1 Functional Requirements

The following abstract functional requirements char-
acterize the application domain as they are crucial for
gaining user acceptance:

Ease of Use: This is the predominant requirement for
most conceivable use cases of a cooperative building.
Installation, configuration, usage, and de-installation
of cooperative devices have to be as simple as possi-
ble.
Security: As home appliances are directly or indi-
rectly used by different groups of people, it is highly
important that the system offers provisions for guar-
anteeing the privacy of data and for preventing un-
authorized access to services.
Awareness of Space: The system must be able to deal
with spatially distributed users and devices. First,
locations should be modeled explicitly to allow de-
vices to query their current position and to adjust
their behavior accordingly. Second, the system
should be able to cope with mobile users and devices.
Awareness of Time: Time constraints need to be
explicitly captured within the system. This is crucial,
for example, with regard to the time between raising
an alarm and consecutive reactions of the user.

2.2 Business-Oriented Model

The proposed business-oriented model abstracts
away from the concrete characteristics of special
devices, systems, and services. From such an abstract
viewpoint, a typical system configuration of an
apartment may look like visualized in Figure 1.

delayed
w ashing

visualize
consumption

activate
device

monitor energy
consumption

appartment
controller

touch
screen

dishwasher

present GUI

washing monitor energy
consumption

Figure 1: Exemplary System Configuration

The figure shows three devices in an apartment,
namely, a dishwasher, a central controller device

representing the apartment, and a touch screen. Each
device, visualized by a large rectangle, has different
characteristics and capabilities, visualized by smaller,
adjacent rectangles. The dishwasher, for example, is
able to wash the dishes and to monitor its energy
consumption. Currently, the visualized devices coop-
erate in order to perform two services: The apartment
controller has activated the dishwasher (based on a
special tariff scheme provided by the local energy
provider), and the touch screen shows the combined
apartment consumption resulting from the activity of
the three devices.

Figure 2 provides an abstract, business-oriented
model capturing the essential concepts as discussed
above. The model is presented as a UML class dia-
gram in order to facilitate its translation to an object-
oriented framework.

Agent Skill Collaboration

Characterizable

Characterization

Description Group

* * 1

*
*

*

Figure 2: Abstract Business-Oriented Model

In the following, we describe the two main layers of
the model, namely, the instance level in the upper
part, and the characterization level in the lower part.

Instance Layer: The instance level consists of the
three classes Agent, Skill, and Collaboration, and the
interface Characterizable.
Agents model actors like devices or user agents.
Agents cooperate with other agents in order to
achieve a certain goal.
Skills model the capabilities of agents. The dish-
washer, for example, offers the “washing” and
“monitor energy consumption” skills. Other agents
may rely on these skills in order to perform their
duty. Each agent is fully responsible for managing its
skills. Agents are never accessed directly, but exclu-
sively via their skills. As dedicated access points to
their agent, a skill may also imply certain safety and
security constraints.
Collaborations model the cooperation and the admis-
sible communication protocols that must be observed
by the participating agents in communicating via
their skills. A collaboration involves a number of
agents which contribute their respective skills in
order to render a certain service to the user.

Note that the possible connection structures which
may be built with these three concepts are highly
dynamic and cannot be restricted a priori. Usually,



the agents will have the responsibility to offer their
skills to other agents and to establish collaborations.

Profound knowledge about the properties and char-
acteristics of agents, skills, and collaborations is
necessary in order to establish collaborations. There-
fore, we introduced a general interface
“Characterizable”, which is implemented by corre-
sponding classes. Characterizable entities are denoted
by a so-called “Characterization”, a general concept
for specifying arbitrary sets of instances. Note that
characterizations capture not only instances of a
certain kind (for instance, only agents), but also
mixed sets of instances (for instance, some agents
and their skills). An instance may belong to multiple
characterizations at the same time. Our conceptual
framework contains two standard subclasses of
“Characterization”:

Descriptions capture static instance properties that
remain stable over long periods of time. Examples
for descriptions are object-oriented signatures or
graphical interaction descriptions like sequence dia-
grams which may be modeled as subclasses of De-
scription. Note that this provides a framework for
adding various kinds of description techniques as
well as the corresponding relationships between them
in the future. In the example of Figure 1, descriptions
supplied by the device vendors could determine the
protocol necessary for querying energy consumption
data from a device as well as the admissible connec-
tion structure between the devices.
Groups capture volatile instance properties that may
change multiple times during operation. A good
example for a subclass of Group is the Location
class, modeling real-world locations like rooms in
cooperative buildings or streets in a town. Groups
may form hierarchies, like the spatial containment
hierarchy of locations.

Descriptions and groups are base concepts for both
device vendors and users. Standard descriptions pro-
vided by vendors enable users and other devices to
query the capabilities of new devices and to use them
in a flexible way. More complex descriptions may be
useful as a specification for component vendors or
even for advanced, self-configuring software sys-
tems. Groups may be used for modeling various
concepts, like locations, access rights, ownership,
and arbitrary other classifications of devices.

Note that some of the given abstract, business-
oriented concepts could be mapped to existing ob-
ject-oriented and componentware concepts like class,
component, or interface of current technical ap-
proaches like Java [AGH00], CORBA [Pop98], or
COM+ [BBC00]. However, these approaches do not
support all necessary features, especially with respect
to the dynamic configuration and the description of
the involved entities.

3 TECHNICAL REQUIREMENTS AND
SOFTWARE ARCHITECTURE

Similar to the previous section, in the following we
first identify the essential technical requirements for
systems within the cooperative building domain.
Based on this, we develop a suitable technical soft-
ware architecture.

3.1 Technical Requirements

The following technical requirements influence the
overall solution:

Dynamic Reconfiguration: The system must be pre-
pared for arbitrary adding and removing of devices or
services, the entry of initially unknown devices or
services, and the mobility of devices or services
within or beyond the installation space.
Robustness: Due to the sensitive area of deployment
in private homes, the requirements with regard to
system robustness are very high. Potential security
hazards or malfunctioning of devices caused by con-
necting them to the system must be avoided in order
to gain and sustain user acceptance. Both the system
and the design of individual devices should guarantee
continued operation on a basic level, even if they are
disconnected or interrupted during communication.
Communication Bandwidth and Latency: Typical use
cases for controlling and monitoring devices and
buildings may be realized with a modest communi-
cation bandwidth of 1 to 100 kbit/s. More advanced
scenarios involving the transmission of audio and
video data will, however, require much higher band-
widths in the area of 1 to 100 Mbit/s.
Scalability: Scalability is concerned with the prop-
erty of the system to handle a varying number of
participating devices and services. The communica-
tion infrastructure should be able to handle the in-
creased communication load properly and to support
a wide variety of different communication media,
especially including wireless facilities.
Interoperability and Standards: It is expected that
various devices from different vendors will be par-
ticipating in a single installation. With regard to user
acceptance and robustness, incompatibilities between
these devices are not tolerable. Therefore, the system
must specify and employ clearly defined interfaces
and protocols of communication, and has to ensure
downward compatibility once these interaction stan-
dards change. With regard to interoperability, it is
highly important to use existing standards for com-
munication and interaction whenever possible.

3.2 Existing Technologies and Approaches

There are a number of existing technologies and
approaches which apply to the previously described
application domain. Based on the level of abstraction
and the intended user group, it is possible to structure
them into three categories:



Basic Communication Infrastructure comprises low-
level technical approaches which may be employed
to supply the means for inter-device communication
within a building. We consider HomeStar [Tec00],
PowerLine with X10 [Hoe96], CEBus [CEB00],
LONWorks [Ech00], Smart House [Sma00], and the
European Installation Bus [Eur99] as representative
members of this group.
Application Frameworks and APIs are specifically
suited to support application development for intelli-
gent buildings. They define abstractions for impor-
tant business entities like ‘device ’or ‘service ’on a
higher level of abstraction and provide or specify a
required technical infrastructure as well as a common
programming model. Jini [Sun99], OSGi [OSG00],
UPnP [Mic99], KNX [Kon01], and OWL [BPR00]
are relevant examples for this group.
Consumer Products are commercially available off-
the-shelf solutions for particular problems of the
application domain. In contrast to frameworks and
APIs, they are targeted at the consumer and thus do
not directly apply to the presented approach.

Note that the given distinction is obviously subjective
and not necessarily disjoint. A given consumer prod-
uct, for example, may provide a particular application
framework or communication infrastructure of its
own, whereas a certain API could also be used in a
different application domain.

3.3 Software Architecture

Modern households are expected to incorporate in-
telligent appliances step by step. In particular, vari-
ous different technical solutions, as categorized in the
previous section, are liable to co-exist. In this section,
we present a technical architecture which provides
the flexibility and scalability required to cope with
the requirements of a heterogeneous technical envi-
ronment. Moreover, the proposed architecture also
incorporates the business model discussed in Section
2 as well as its implied functional requirements.

Therefore, we propose a layered architecture
[BMR96] with clear abstractions and interfaces be-
tween each of the three layers (cf. Figure 3). This ar-
chitecture allows to exchange particular technical
solutions on each level. The first layer represents the
communication infrastructure which is encapsulated
by the communication abstraction. This allows for
consistent access of possibly different communica-
tion technologies. For example, a household might
use both X10 [Hoe96] and the European Installation
Bus [Eur00] to couple its appliances. Both technical
solutions are addressed via the same, uniform inter-
face.

Based on this foundation, the second layer imple-
ments the abstract business model as discussed in
Section 2. To organize all entities, like agents, skills,
or collaborations, a number of specific managers

offer dedicated services. Consider, as an example, the
description manager which keeps track of all de-
scriptions in the system, specifying aspects of agents
or their skills.

G
ro

up
M

an
ag

er

D
es

cr
ip

tio
n

M
an

ag
er

C
on

fi
gu

ra
tio

n
M

an
ag

er

Se
cu

ri
ty

M
an

ag
er

C
ol

la
bo

ra
tio

n
M

an
ag

er

Cooper
ation

Communication Abstraction

Common Business Interface

Communication
Infrastructure 

Application ApplicationApplication

Agent

Skill

Figure 3: Technical Software Architecture

A new agent introduced to the system commits a set
of descriptions to the description manager. Other
agents may query these descriptions and discover the
agent in question. The common business interface
offers a consistent way to access the services of tech-
nical managers as well as involved business objects.

The third layer represents the various applications in
an intelligent home. They model the household and
its appliances by a set of specialized, cooperating
agents extending the common business model on the
second level while using the technical services of the
proposed managers.

The technical architecture presented above fulfills
important technical requirements as extensibility,
scalability, and standardization (cf. Section 2.3). To
facilitate understanding of the architecture, we dis-
cuss the technical managers in more detail:

3.1 Group Manager

The concept ‘Characterizable’ captures the properties
and characteristics of agents, their skills, and their
collaborations (cf. Section 2). Everything that is
“characterizable” may be grouped together with other
characterizable entities. Groups of characterizable
entities share common properties, at least the com-
mon property of being part of the same group.

Responsibilities: The group manager has to provide
services to organize and manage hierarchical groups
of characterizations. Each characterization (a de-
scription or a group) refers to a set of characterizable
entities (agents, skills, and collaborations). These
groups allow to combine a set of characterizable
entities and describe their common properties.



As an example, consider a given instance diagram
D1, containing the agents A1, A2, and A3 in a certain
configuration. Agent A1 and A2 are located in the
same room R1. Thus, they are both part of the group
R1, which is described by a description D2. Thus,
characteristics of groups are described by descrip-
tions, but groups themselves can be part of a group
again. E.g., the room R1 could be part of the building
B1, which is again a group described by D3.

All in all, the basic issue of the group manager is to
provide a set of hierarchies of characterizable enti-
ties. Moreover, the group manager offers services to
browse and query these hierarchies. To run a query,
the client has to provide a description containing the
properties of the groups he is looking for. The group
manager then returns all groups matching the de-
scription. As the group manager is the entry point for
agents to explore the universe it is necessary to
authenticate and authorize all clients. To this means,
a close cooperation with the security manager (cf.
Section 3.4) is mandatory.

Implementation aspects: Approaches like Jini
[Sun99] or Universal Plug and Play [Mic99] both
provide a naming service and some kind of trading
service. However, a sophisticated group manager as
described in this section is currently not available.
New technologies like LDAP servers [HSGH98] or
meta-directory services in combination with existing
Naming and Trading Services [Pop98] may be used
to implement the group manager. Based on the
LDAP services, all characterizable entities may be
able to register themselves with the directory service.
Once they are registered, they may be introduced in
several hierarchical groups. Additionally, meta-
information may be added to each group. Thereby,
the basic requirements could be realized on top of
available meta-directory services. As these services
are designed to be scalable, robust, flexible and
highly interoperable, it seems possible to realize most
of the technical requirements based on existing com-
ponents in the near future.

3.2 Collaboration Manager

The collaboration manager component plays a central
role for the highly dynamic, cooperative nature of the
system. As described in Section 2, agents use their
skills to collaborate in order to perform useful tasks
for the users. To this means, it is necessary to deter-
mine the relevant collaborations and establish the
required connection structure at runtime.

Responsibilities: The collaboration manager uses the
group manager to discover registered agents, their
skills and defined collaborations of the system. The
information returned by the group manager has to be
suitable to contact the entities in question and re-
trieve associated descriptions from the description
manager. This information is used by the collabora-
tion manager to choose a suitable collaboration based
on available skills, current state of participating

agents, and applicable security policy as determined
by the security manager.

A simple usage of fixed, bilateral collaborations
between user agents and an individual skill is similar
in result to the use of a conventional Trading Service,
as specified in CORBA [Pop98]. In the energy man-
agement application example, it should be possible to
enumerate all collaborations in the system that offer a
simple dishwashing service. However, the use of
more complex collaborations, like dishwashing in an
energy-saving scenario, requires more “intelligent”
behavior from the collaboration manager. It has to be
able to retrieve the necessary collaboration descrip-
tions, find suitable agents and skills, and establish the
proper connection structure.

In general, this more advanced functionality of the
collaboration manager requires domain-specific
knowledge which may be supplied to the system in
the form of dedicated descriptions. Although auto-
matic discovery and coordination of agents or their
skills is preferred, it may be necessary to ask for
human assistance or allow the configuration manager
to override certain choices of the collaboration man-
ager.

Implementation aspects: Although the collaboration
manager could be implemented as an individual,
unique component of the system possibly with re-
dundant backup components, an interesting imple-
mentation variant is a federation of different collabo-
ration managers. In this case, each collaboration
manager possesses its own, possibly partial view of
the system, exchanging registration information with
other known collaboration managers, and redirects
queries to its partners if the individual knowledge is
not sufficient. Taken to the extreme, every agent of
the system implements the necessary functionality,
leading to the conventional system model of agent-
based artificial intelligence research. While such an
approach offers an elegant solution to the problem of
robustness, as demonstrated by the reliable DNS
name service of the Internet, for example, the de-
ployment, management and trouble-shooting of such
a system becomes more difficult.

3.3 Description Manager

The conceptual framework of Section 2 offers de-
scriptions to allow for proper specification of dedi-
cated aspects of agents as well as their skills, and
collaborations. Everything, which assigns a charac-
teristic to an instance of the system, might be re-
garded as a description. Conceivable descriptions
range from lists of simple attribute-value pairs for
individual skills to complete interaction specifica-
tions, e.g. message sequence charts [Kru00] for com-
plex collaborations of several agents.
Consider, for example, a message sequence chart,
which species a service protocol for energy inquiries.
To offer inhabitants of an apartment statistics of their
respective energy consumption, cooperating agents



are required to understand this inquiry protocol.
Proper establishment of collaborations based on
descriptions is the most prominent motivation for the
concept of descriptions. Because all instances adher-
ing to a description constitute a group, the description
manager heavily relies upon the group manager.

Responsibilities: The description manager is respon-
sible for an accurate, up-to-date grouping of all in-
stances known in the system according to the set of
descriptions. Especially, it reacts to new descriptions
or characterizable entities which are introduced dur-
ing run-time of the system. Thus, an existing charac-
terizable entitiy is added to a description's group.
Based on the collected information, the description
manager may be queried at any time for descriptions
or characterizable entities they relate to. Possible
queries include, for instance, “Which descriptions
match agent X?” or “Which agents fulfill descrip-
tions Y and Z?”.

Implementation aspects: The core functionality of the
description manager is the decision whether a char-
acterizable thing fulfills a given description. For this
purpose, two realizations are conceivable and most
likely used together for maximum benefit: The solu-
tion based on groups involves a simple implementa-
tion, if a sophisticated group manager is available.
However, managing the possibly numerous groups in
a highly dynamic system might be expensive. As the
description manager solely accesses these groups, a
separate implementation of the corresponding
mechanisms might be more promising.

Another variant is to provide the description manager
with mechanisms which allow to decide dynamically
whether a description fits or not. For example, one
might decide not to keep track of all door devices in
an apartment but instead match a device with the
description “door” if it offers the protocols “open
door” and “close door”.

3.4 Security Manager

The security manager cooperates with all other man-
agers and components in order to check whether their
intended operations are admissible. To this means, it
has to identify and authorize the participating agents
and system components as well as enforce restric-
tions on their behavior based on certain rules. Note
that we suppose the presence of sufficient base fa-
cilities in the communication infrastructure, for ex-
ample, with respect to symmetric as well as asym-
metric data encryption and digital signing of mes-
sages.

Responsibilities: As already mentioned, the primary
responsibility of the security manager is to ensure
that only admissible operations are performed. Fur-
thermore, the security manager should also be able to
recognize malevolent components and to take active
countermeasures against them.

To this means, the security manager should block the
entry to the system for unauthorized or unknown
agents, components, and devices. A variety of strate-
gies are conceivable: Manufacturer-based or indi-
vidually created digital certificates may grant certain
rights to specified agents, the agent itself could allow
for inspection of its code by the security manager,
employing techniques, like proof-carrying code
[Lee00. Access may also be granted by resorting to
the agents' descriptions, especially when they have
been created by a trustworthy party. An example for
this is a location-based security service, which allows
only devices physically located within the user's
apartment to participate in certain collaborations.

The security manager also supervises the ongoing
operation of the system to protect the user from un-
wanted actions of malevolent or faulty agents. To this
means, the security manager uses the description
manager to achieve a characterization of the desired
behavior within a collaboration and checks whether
the intended actions fit with this behavior. This may
be done by explicit means, like, for example, access
control lists for the respective agents, or by resorting
to high-level, graphical or declarative behavior speci-
fications.

Implementation aspects: It doesn't seem reasonable
to realize the security manager as a single, unique
component, as it is involved in each and every op-
eration of the system. A failure of this central com-
ponent may eventually render the whole system use-
less. Furthermore, if an aggressor compromised a
single, central security manager, the whole system
would become vulnerable.

Therefore, a highly distributed implementation seems
to be adequate, where each agent is responsible for
authorizing other components and their operations.
As a starting point in the design of such a system,
existing security schemes based on peer structures
may be analyzed, like the web of trust imposed by
the public key infrastructure of the PGP program
[Zim95].

3.5 Configuration Manager

The configuration manager provides the interface to
configure entities such as agents, skills, and collabo-
rations, which offer a certain service to the user. Each
entity provides an interface to its features so that the
configuration manager may present and manipulate
them in a uniform way.

Responsibilities: The configuration of the entities in
question is based on their respective characteristics.
It uses the group manager, the description manager,
and the collaboration manager as helper services.
Configuration of entities is needed during their whole
life cycle: after the installation of a new device, for a
change of behavior, such as a modifying the energy
consumption policy, and after removal of a device.
For each of these stages, the configuration manager



has to be able to locate a new device, to contact it, to
query the characteristics, and to present them with a
uniform interface.

Implementation aspects: The configuration of the
system and its constituents should be possible for any
type of device from anywhere in the network, espe-
cially via direct manipulation of the device, e.g. by
pressing buttons on its front panel. Therefore, every
device should provide its own configuration interface
that may be integrated into a container. Moreover, it
is mandatory that the presented configuration inter-
face is adaptable to different output devices like
touch screens or handheld computers. This could be
implemented by separating the description of the
configuration interface from its presentation on a
particular output device. A similar approach is used
in XML [XML01], for example, which separates
structure, content, and presentation of a document.

4 CONCLUSION

In this paper, we elaborated an software architecture
for cooperative buildings which consists of two main
parts: an abstract business-oriented model and a tech-
nical software architecture. Thereby, the presented
solution abstracts away from technical details and
concentrates on the common business model as a
foundation of applications in the scope of intelligent
buildings. The proposed software architecture is
structured into several layers separated from each
other by well-defined interfaces. This supports both
flexibility and scalability of the approach.

The core business framework builds around the es-
sential concepts agent, skill, and collaboration. We
demonstrated how the business model may be easily
mapped to existing technologies and thus may be
considered as an appropriate foundation for future
implementations. A number of dedicated managers is
responsible for various different aspects as, for in-
stance, the administration of groups and descriptions,
or the overall system security. We discussed each of
these managers in detail, reasoned about implemen-
tation variants as well as their mutual interactions.
Moreover, we outlined how existing technical solu-
tions may be mapped to the proposed architecture.

Based on this work, we recommend further interdis-
ciplinary elaboration of the individual aspects. First
of all, more scenarios of different application areas
should be analyzed. We considered energy manage-
ment as a prominent example, while security and
health care represent constitute other highly interest-
ing market segments. On the technical side, the
evaluation of existing technologies and solutions
should be elaborated to identify promising candidates
for actual implementation. Building upon gained
practical experience, the proposed architecture may
be further revised and refined.

REFERENCES

[AGH00] Ken Arnold, James Gosling, David
Holmes. The Java Programming Language - Third
Edition. Addison-Wesley, 2000.
[BBC00] Ray Brown, Wade Baron, William D.
Chadwick. Designing Solutions with COM+ Tech-
nologies, Microsoft Press, 2000.
[BPR00] B. Bruegge, R. Pfleghar, T. Reicher
Internet Framework for Cooperative Buildings.
EIB Event 2000 Munich, Germany, 2000.
[BMR96] Frank Buschmann, Regine Meunier, Hans
Rhonert, Peter Sommerlad, Michael Stal. Pattern
Oriented Software Architecture, John Wiley & Sons,
1996.
[BRSV98] Klaus Bergner, Andreas Rausch, Marc
Sihling, and Alexander Vilbig. A componentware
development methodology based on process patterns.
In PLOP`98 Proceedings of the 5th Annual Confer-
ence on the Pattern Languages of Programs. Robert
Allerton Park and Conference Center, 1998.
[CEB00] CEBus Industry Council Incorportion.
CEBus Industry Council Homepage.
http://www.cebus.org, 2000.
[Eur00] European Installation Bus Association. EIB
Handbook Series, Edition 3.0, 2000.
[Hoe96] Dan Hoehnen, X10 FAQ.
ftp://ftp.scruz.net/users/cichlid/public/x10faq, 1996.
[HSGH98] Tim Howes, Mark C. Smith, Gordon S.
Good, and Timothy A. Howes. Understanding and
Deploying LDAP Directory Services (MacMillan
Network Architecture and Development Series).
MTP Press, 1998.
[Joh99] Johnson Controls. Metasys Facility Man-
agement System.
http://www.johnsoncontrols.com/Metasys, 1999.
[Kon01] Konnex Association Homepage.
http://www.konnex-knx.com, 2001.
[Kru99] Ingolf Krüger. Distributed System Design
with Message Sequence Charts, Dissertation at the
Technische Universität München, 2001.
[Lee00] Peter Lee. Proof-Carrying Code.
http://foxnet.cs.cmu.edu/people/petel/papers/pcc/pcc.
html, 2000.
[Mic99] Microsoft Corporation.UPnP -Universal
Plug and Play Forum. http://www.upnp.org, 1999.
[OSG00] OSGi. Open Services Gateway Initiative.
http://www.osgi.org, 2000.
[Pop98] Alen Pope. The Corba Reference Guide:
Understanding the Common Object Request Broker
Architecture. Addison-Wesley, 1998.
[Sun99] Sun Microsystems. Jini Architectural Over-
view, Technical White Paper, 1999.
[Tec00] Lucent Technologies.Lucent HomeStar.
http://www.lucent.com/networks/homestar, 2000.
[XML01] XML Consortium. XML Homepage.
http://www.xml.org, 2001



[Zim95] Philip Zimmermann. The Official PGP
User's Guide. MIT Press, 1995.


