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Abstract: A Laser-based Aggregate Scanning System (LASS) was developed at the
University of Texas at Austin for rapid characterization of various properties of
congtruction aggregates. For the determination of shape and size parameters, the “virtual
proportional caliper” and “virtual sieve” concepts are introduced, where 3D particle data
are rotated about different axes to find elongation and flatness ratios, and the smallest mesh
opening size through which a particle can pass. This paper also proposes a group texture
based quality control method using wavelet analysis. This method is expected to provide
fast group characterization of aggregates during production, enabling real time quality

monitoring.
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1. INTRODUCTION

The importance of using aggregate with specific
characteristics is gaining increased recognition in the
construction industry. To ensure that high quality
aggregate products are used, efforts are being made
to test more frequently. However, some common
methods for aggregate testing like ASTM C136
(Standard Test Method for Sieve Analysis of Fine
and Coarse Aggregates) and ASTM D4791 (Standard
Test Method for Flat Particles, Elongated Particles,
or Flat and Elongated Particles in Coarse Aggregate)
are time consuming and labor intensive. Moreover,
for prompt adjustment of the aggregate production
process, fast aggregate characterization methods are
necessary.

A prototype laser scanner was developed for the
purpose of characterizing aggregates in a fast,
accurate, and reliable way. Using laser profiling, this
system is able to capture three-dimensional (3D) data
on aggregate particles. The “virtual proportional
caliper” and “virtual sieve” concepts are used to
simulate the manual processes of measuring the shape
and the gradation of aggregate particles. In these
“virtual” methods, each particle's 3D data are
incrementally rotated about different axes to calculate

elongation and flatness ratios, and the smallest mesh
opening size through which the particle can pass [1].
This paper aso proposes a group texture based
quality control method using wavelet analysis. This
method is expected to provide condensed critical
information on aggregates as they are produced,
enabling real time quality controls.

2. LASER-BASED AGGREGATE
SCANNING SYSTEM (LASS)

The "Laser-based Aggregate Scanning System"
(LASS) consists of a laser line scanner, a linear
motion dlide, and a personal computer (Figure 1).
The laser scanner, which is mounted on the linear
motion dlide, passes over an aggregate sample,
scanning it with a vertical laser plane. This system is
designed to provide maximum flexibility for the study
of different scanner velocities and spread patterns
while repeatedly scanning the same field of
aggregates scattered randomly on a table. The 3D
data obtained in this way are transformed into 8-bit
grayscale digital images, where grayscale pixel values
represent the height of each data point. A
comprehensive explanation of the LASS can be found
in[2].
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Figure 1. The Laser-based Aggregate Scanning
System (LASS).
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3. 3D IMAGE SEGMENTATION

An aggregate sample that is randomly scattered on
the platform is likely to have particles that touch each
other. Accordingly, the particles should be separated
in the captured image by a particle segmentation
algorithm for accurate assessment of each particle.
For this purpose, a method for segmenting particle
images acquired from laser profiling was developed
using a Canny edge detector [3] and a watershed
transform [4]. This method combines particle shape
and height gradient information. For example, while a
distance map [5] used for the watershed transform
provides particle shape information, it does not show
gradients of the image. On the other hand, while
Canny edges are entirely relevant to the image
gradients, they are not strongly related to particle
shape. It is possible to obtain better segmentation
results by combining these two non-redundant bits of
information.

The segmentation algorithm is as follows:

1. A particle image acquired from laser profiling is
thresholded into a binary image.

2. Rough particle outlines are drawn on the binary
image using Canny edges detected with rigorous
threshold values.

3. The binary image is transformed into a distance
map.

4. Regional minima [4] of the distance map are
identified with a varying search window
approach, where the number of neighboring
pixels being compared with the pixel of interest
is determined proportionally to the height value
of the pixel.

5. Theidentified regiona minima are given unique
|abels, and they expand through a binary dilation
process [5] until they meet other regions,
including the original background regions.

6. When the growing regions meet other regions,
the borders between them are set as watersheds.

7. The validity of the watersheds is checked by
comparison with Canny edges detected with
liberal threshold values. That is, if the
watersheds do not have corresponding Canny
edges, the regions separated by them are merged.

8. Findly, to compensate for some possible data
|oss from the self-occlusion problem [5], voidsin
each particle region are filled with the
horizontally closest pixel height values in the
region.

4. VIRTUAL PROPORTIONAL CALIPER
AND VIRTUAL SIEVE

It is assumed that the aggregates are oriented in
the most stable position when spread out on the
platform. The largest height value of the particle is
then the thickness or the shortest primary dimension.
Once the shortest dimension is obtained, calculating
the intermediate and longest dimensions becomes a
two-dimensional problem [1]. That is, disregarding
the height data, the particle image is projected onto a
two-dimensional (2D) plane. An agorithm is then
used to incrementally rotate the particle to find the
smallest rectangle that circumscribes the projected
image. This process can be thought of as a “virtual
proportional caliper”. The length and the width of the
rectangle then become the particle's longest and
intermediate dimensions, respectively. In case the
particle does not rest flat, the three primary
dimensions are sorted by magnitude to determine the
true longest, intermediate, and shortest dimensions.
Finaly, the elongation and flatness ratios are
calculated for each particle [1].

Next, the “virtual sieve’ is performed, where each
particle's projected image dong the longest
dimension is incrementaly rotated to find the
smallest circumscribing sguare. That sguar€'s
dimension becomes the smallest mesh size through
which the particle can pass. However, in many cases,
a particle that cannot pass a certain mesh size in this
“virtual sieve” actually can pass through that opening
size in a dightly different orientation. To correct for
this effect, a reduction factor of 0.85, which was
determined from examining various oversized
particles, is used to calculate the actual mesh opening
that the particle can pass through.

To verify the performance of the LASS in
determining particle shape parameters, 200 particles,
ranging from 7 to 26 mm in their longest dimension,
were manually measured in order to compare with the
results from the LASS. To get samples that have a
range of particle colors and surface textures,
aggregates were procured from four different quarries
in the United States. From each source, fifty particles
were randomly selected making a total of 200
particles. To measure the three primary dimensions of
each particle, a vernier caliper (0.025 mm accuracy)
was used. The manual measurement of the 200
particles required approximately four hours with the
aid of a computer spreadsheet program to calculate
the elongation and flatness ratios. For the volume
measurement, each particle was immersed in a water-



filled graduated cylinder (100 mm® divisions) where
the change in water level corresponded to the particle
volume. For the volume measurement, approximately
seven hours were required. After the manual
measurements were completed, the particles were
scattered on the LASS platform, scanned, and
analyzed. The resolutions for X, Y, and Z directions
(see Figure 1) were 0.3 mm, 0.3 mm, and 0.5 mm
respectively. It took 70 seconds to scan the 200
particles, and 40 seconds to calculate elongation and
flatnessratios.
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Figure 2. Comparison between the manual and LASS
measurement: (a) Flatnessratio; (b) Elongation ratio;
(c) Volume.

Figure 2 shows the results of the correlation
analysis conducted to see how the manua
measurements compared to the LASS results. All
three show that there are strong correlations between
the manual and LASS measurements.

In preparation for evaluating the performance of
the LASS in determining particle size parameters,
eight benchmark aggregate samples of different grain
size distributions and shapes were assembled. The
eight samples were comprised of the following four
different materials, two samples per material: river
gravel, traprock, granite, quartzite. The samples, each
approximately 1 kg, contained particles ranging in

size from 2.36 mm (#8 sieve) to 19 mm (3/4 inch
sieve). After the aggregate samples were manually
spread on the platform, the data were captured and
analyzed to obtain the grain size distribution. It took
approximately 8 minutes to scan one aggregate
sample and calculate volume and equivalent mesh
size. Figure 3 shows the comparison results where the
sieve data are represented as dots indicating their
discrete nature. Due to space limitations, only one
particle size distribution is presented. As seen from
Figure 3, results from the manual sieve analysis and
the LASS compare very well.
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Figure 3. Comparison of a size distribution result
between the manual and LASS measurements.

5. GROUP TEXTURE BASED QUALITY
CONTROL

The “virtual proportional caliper” and the “virtual
sieve” methods rely on measurements of each
particles shape and size parameters. By
implementing these methods in various areas such as
laboratories, large construction sites, and so on,
construction material quality is expected to improve.
However, if the application is primarily concerned
with variations in the product rather than complete
characterization, a much faster method can be used.
For example, in aggregate production plants, the
gradation of aggregates is monitored based on
variations in the percent passing a specified sieve size
[6]. Thus, by monitoring variances, plant operators
can know whether the production process needs to be
adjusted. In addition, the method of extracting the
variance information is likely to facilitate faster
analysis because it does not require the complete
particle characterization process of measuring al
particles after segmenting them.

Wavelet analysisis one method that can compress
avast amount of LASS data to a degree that product
variance information can be easily extracted. It
decomposes a signa into a group of linear
combinations with each combination having different
resolutions. This transform is conducted by using a
finite length of a basis function called a “mother
wavelet”. The “mother wavelet” is compared with the
signal to be analyzed by changing its length (dilation)
and location (trandation) in order to find where and
how much each dilated and translated version of it



coincides with the signal. The dilation and translation
mechanism of the “mother wavelet” enables not only
production of localized information in space and
frequency domains, but also effective representation
of the signal. The following paragraphs reviews 1D
and 2D wavelet analysis and is based on the work
presented in [7], [8], and [9]. Building upon these
formulations, a texture-based method is proposed for
controlling quality during aggregate production.

5.1 Wavelet Analysis

Particle images obtained from the LASS go
through a wavelet analysis to obtain a better
information format. Wavelet analysis can best be
explained with its intrinsic characteristic of Multi
Resolution Analysis (MRA). Figure 4 shows how to
decompose a signal into a group of linear
combinations. V,, V,, and V, are vector spaces such

that V, isasubspace of V,, and V, is a subspace of
V,. W, and W, are “difference” vector spaces
between V, and V,, and V, and V,, respectively.
These relationships can be expressed as
VoUW, =V, D
V,OW =V, 2
where [ stands for vector addition.

Figure 4. Decomposition of asignal f (t) using
wavelet analysis.

Figure 4 aso shows that the vector spaces V,,
W,, and W, are mutually orthogonal. If Figure 4
shows al the vector spaces available, the most
accurate approximation of a signa f(t) can be
obtained by projecting it on V,, which is f .
Likewise, if more approximations are needed for the
sgnal, f, and f,, projections on V, and V,
respectively, would minimize the information loss.

This implies that the signal can be represented with
various levels of approximations, minimizing

possible information loss on each. That is, depending
on the degree of accuracy required, various levels of
the difference vector ( f,,, f,,, and so on) can be

added to the initial approximation f, in order to
represent the signal. As an example, thesignal f,, can

be expressed as

f,="f, +f, +f, (3)
Expansion of the vector spaces can generaize
Equation (3) into

f=f,+Xf, @

Since f, and f, can also be represented as alinear

combination of basis functions, Equation (4) can be
expressed as

f0=26,4.0+2Xd0.0 O
where ¢, (t) and c,, are basis functions and their
corresponding coefficients for f, , respectively, and
¢, () and d;, ae bass functions and their

corresponding  coefficients for  f,, ,

Here, the basis function ¢, (t) for the initial

approximation of a signal is caled the “scaling
function”, and the basis function ¢, (t) for the

difference vectors are called the “wavelet”. Note that
as the level of difference vector space goes up, better
resolution is obtained in Figure 4. Thisimplies that as
j goes up, the length over which the wavelet ¢, (t)

exists is reduced. This aspect of wavelet analysis
called MRA enables an efficient representation of a
signal in the sense that high frequency parts of the
signal are represented with better resolution than low
frequency parts.
By expanding the area of | to negative infinity,
Equation (5) turnsinto
f=2 >d .0 (6)

j=—o0 k=—o

respectively.

Therefore, if wavelets ;| (t) are orthonormal to
each other, wavelet coefficients d j ae expressed
as

d,, =< fO).,(t)>= jf Oy, Od ()

where <x, y> means inner product of x and y.
Equation (7) is called the wavel et transform.

Wavelets are obtained by scaling and trandating
the so-called “mother wavelet” in the following
manner [7].

1 (t-k) . _
¥, ) :—.w(—.) >0, j,kOR (8
iU

where ¢ is the “mother wavelet”, j and k are scale

and trandation coefficients, respectively. 1/\/T in



Equation (8) is for making the norm of ¢, (t) into 1

[7]. Note that j isthe inverse concept of frequency.
The mother wavelet is a compactly supported
(finite length) function that has the following

properties[7]:
_j w(t)dt =0 9)

=1 (10
where ||X|| isnormof X, i.e <X,X>.When2is
used asthe scale j, asin most cases, Equation (8) isas
follows[7]:

w0 =2"y2't-k), jkOR (12
These compactly supported wavelets enable wavelet
coefficients d; to drop off rapidly allowing for

efficient representation of the signal. In conclusion,
wavelet analysis transforms and comparts a 1D signal
into a 2D time(space)—frequency domain showing
where and how much the dilated and trandated
versions of the mother wavelet correlate with the
signal.

5.2 2D wavelet analysis

2D wavelet analysis begins by defining 2D basis
functions by multiplication of scaling function @(x)
and ¢(y) . Then, from the orthonormal characteristic
of the 2D basis functions [7], a signal f(x,y) (2D
image) can be represented as

f.(xy) = Z Yal,Dex-0g2y-j) (12

=—o0 j=—00

onV,. Since _Z}al(i, @ (2x—i) in Equation (12) isa

1D signal and can be represented as a sum of the
approximation on V, and the difference vector on

W, , it becomes

2, (P(x-)+ Th, (My(x-n)  (13)
Putting Equation (13) in Equation (12),
f(xy) =3 Sa, (Me(x-npRy- )+

j=—oon=-c0

> b, (Me(x-ngRy-j)  (14)

j=men=—c
Likewise,  if Sa, (Npy-j)  and

ibo,,-(nW(ZY‘ j) in Equation (14) are decomposed

into their approximations and difference vectors,

f00y) = 2 3e 0 DO(x-e(y= i)+
zzdoo(l ])¢(X ')41/()/‘])"‘

=—wj=

> 3 d, (0 D@ (x=i)g(y =) +

j=—o0j=—c0

> 3, (0, D x-D@ly - i) (15)

i=—cwj=—co
Thus, by adding an infinite humber of difference
vectors to the initial approximation, f(x,y) is

obtained as follows:

fxy)= X 36(1Ke(x- Dty k) +
>3 3, (kP2 x-

i=0 j=—o k=—co

33 Td.(kwE x-

i=0 j=—co k=—co

NyE2'y-k) +

8

Ne2'y-k) +

5 3 5. k@ - wE'y-k) (1)

Taking the lower limit of i to negative infinity in
Equation (16) and wusing the orthonormal
characteristic of 2D basis functions, wavelet
coefficients can be obtained as follows:

A =< XYW, (xy) >

ikl

—jf(x YW, ., (%, y)dxdy, i,j,k0Z, 10[0,2]
where W

|.j.k0:¢(2_‘X_j)w(2_iy_k)
W, =¢(2'x=)¢(2"y-K)

W =02 x= w(2'y-k)  (17)

Figure 5 shows a three-level decomposition of an
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Figure 5. A three-level decomposition of a signal
f(x,y) using wavelet analysis.

image. While C, is simply an approximation of the
image, d,; are detail (difference) information at each
d,,and d,

show vertical, horizontal, and diagona edge
information, respectively. In practical discrete
wavelet transform calculations, a signal is passed
through a high pass filter and a low pass filter, with
values that are associated with each wavelet system,
and down sampled to produce wavelet coefficients.
This is because the wavelet transform is essentially a
convolution operation [7].

different resolution level i. Here, d

i,07 i1

5.3 Texture Based Quality Control Method

In the machine vision field, texture can be defined
as a combination of texture elements and the relations



between each element. Aggregate particles can
correspond to texture elements with certain special
relationships with each other. If a group of
construction aggregates are scanned into an image,
this image can be considered as a texture. One
method to quantify texture uses edge information in
the image. For example, the number of edge pixelsin
acertain size area can be used for texture description.
However, texture description is highly scale
dependent [5]. For example, edges detected with high
resolution would be ignored if low resolution was
used. This is where the value of wavelet analysis
comes in. As discussed previously, wavelet analysis
provides vertical, horizontal, and diagonal edge
information on various scales. Therefore, using this
information, it is possible to quantify the texture of an
aggregate image effectively and objectively. Then, by
comparing this quantified information between in-
spec and out-of-spec aggregate images, any aggregate
group with out-of-spec gradation can be detected as
unacceptable.
The following features are proposed:
»  Standard Deviation of c,(j,k)

- TN, G0 L 1004

j=—ook=—0c0| =0
»  Standard Deviation of d,,(j,k), i O[0,4]

The eleven features, which are obtained through five
levels of wavelet decomposition of laser-based
aggregate images, are expected to well differentiate a
group aggregate with out-of-spec gradation, in
conjunction with a classifier such as artificial neural
networks. For basis functions, Daubechies wavelets
[8], which are known to work well with natural
images, will be used.

6. CONCLUSION

The Laser-based Aggregate Scanning System
(LASS) was applied to the characterization of shape
and sSize parameters of aggregates. For the
determination of shape parameters, the “virtual
proportional caliper” method was used, where
individual particle data were rotated along their
shortest dimension direction to find elongation and
flatness ratios. For gradation analysis, the “virtual
sieve” method was used, where the particle data were
rotated along the longest dimension direction to
calculate its equivalent mesh opening size. To save
aggregate sample preparation time, a method for
segmenting particle images acquired from laser
profiling was also developed based on fusion of the
Canny edge detector and a watershed transform. In
the verification test, the LASS measurements of the
flatness ratio, elongation ratio, volume, and particle
size distributions all showed very strong correlations
with the manual measurements, demonstrating that
the LASS is a powerful tool for particle
characterization.

The LASS is also expected to provide group
texture based aggregate information that can be used
for quality control in aggregate production plants.
The proposed wavelet-based features extracted from
the aggregate image acquired from laser profiling are
extremely promising in the sense that they represent
the aggregate in an effective way, and they can be
obtained rapidly. This ability will enable aggregate
producers to monitor various aspects of product
quality during their production, so that immediate
process adjustments can be made to ensure better
quality products.
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