

STRUCTURAL LAYERED APPROACH TO DESIGN OF
EXPERIMENTAL CONTROL SYSTEM
FOR AN AUTOMATED EXCAVATOR

Dr. Henryk Dobrowolski

Institute of Computer Science, Warsaw University of Technology

Abstract: Some aspects of systematic design of computer control system for a hydraulic ex-
cavator are discussed. A concept of software layers is presented, which can help to lower
project cost and to improve the ability of system to be modified and extended.

Keywords: hydraulic excavator, computer control, software design.

1. INTRODUCTION

This paper presents the problem of software de-
sign for excavator’s computer system from the point
of view of a computer science engineer. It is based
on a long-time cooperation with Institute of Heavy
Working Machines (IMRC) at Warsaw University of
Technology.

There are few “intelligent” heavy machines on
the market (if any). One of the most important fac-
tors causing it is a high expense necessary to design
and put such a machine into practice. A common
approach to design an automated heavy machine is
taking an ordinary one and adding special equipment
to achieve a desired functionality. This way cannot
lead to optimal solutions, so there is a necessity of
new attitude to design process of a machine itself –
especially a hydraulic subsystem and engine control
have to be prepared to computer control from the
very beginning.

Demand on fully automated machines like exca-
vators is not high, so these machines should be
manufactured in diverse versions. Therefore a com-
puter system for excavator should be scalable, i.e.
reducible to diagnostics and operator support or, on
the other side – expandable, according to needs, up
to robotized excavator capable of autonomous work
without direct human supervising (e.g. for dangerous
environmental conditions).

1.1. System Specification

First step of any system design is preparing its
specification. A functional specification describes
tasks, which represent functionality of a system – in
this case the functionality of an “intelligent” ma-
chine. The boundaries of system scalability must be
described as well. A specification is a top-down
process. It starts from the general description of
system functions and continues with more and more
detailed guidelines.

In recent years formal methods of specification
have gained in significance. They allow not only
more precise specification as any verbal description,
but can be used to verification of correctness of the
project. There are methods especially adequate for
software projects, like Z calculus.

1.2. Hardware Architecture and Scalability

In described case the main problem is how to re-
duce cost of development for on-board control sys-
tem of the machine and to make it scalable accord-
ing to customer needs. This aim can be achieved
using modular architecture consisted of separated
functional modules, which can be assembled in a
variety of combinations to attain user needs. Modu-
lar system can be build using separate controllers as
“bricks” connected together with bus (or network) as
a communication channel – this architecture can be
called as distributed. Distributed system architecture
can be seen also as a network of cooperating nodes,
which realize together a prescribed tasks.

Dedicated hardware would be certainly the best
solution for system nodes, but it is very expensive
and for this reason often not acceptable, especially
for research and experimental systems. Usually
designers give up system optimising to reduce the
project cost and apply typical hardware “from the
shelf “. The most popular and probably worst choice
is using ordinary personal computers. PC is not a
good solution because of its low immunity for hard
environmental conditions, although CPCI standard
overcomes this problem. There are a variety of
modular open systems on the market, starting from
PLCs up to VME and CPCI computers with a rich
selection of I/O interfaces. These are manufactured
according to industrial standards and can stand harsh
environmental conditions of building site.

The same freedom of choice is to be concerned
by network solutions, but the probably most appro-
priate bus for application with vehicles is CAN. It is
supported by many manufacturers, as well of indus-

trial computers and PLCs as of sensors and actuators
(recently also for power hydraulics).

In this paper I do not intend to consider details of
the system architecture – it was discussed many
times, I presented it already long ago in [1].

1.3. Operating System and Software Tools

In control systems fulfilling of specific require-
ments of a hard real time is essential – common
operating systems like Windows are not proper solu-
tion. Furthermore, a system for excavator must be
embedded and cannot use a magnetic disk storage
(because of vibrations and shocks) – except for
solid-state disks like these built using FLASH or
SRAM memory. Only Windows CE and NT-
Embedded can be used as operating system for em-
bedded system, but are not suitable for fast control
applications. There are many real time operating
systems (RTOS) appropriate for control applica-
tions. The only disadvantage of them is the necessity
to learn about their characteristics before you write
any not elementary application.

Apart from the operating system there is a spe-
cific knowledge of I/O hardware required (interface
of sensors and actuators) – drivers delivered by
hardware manufacturer can simplify the problem.

Another problem for software designer is a
choice of proper tools. Programmers often used to
write control applications in assembly language. It
was justified by relative low efficiency of early
microprocessors and low code quality produced by
compilers, but this way is time-consuming and pro-
grams are not portable between processor platforms.
Nowadays a majority of real time applications are
written in C or even in C++ and Java. The two latter
languages can be carefully used only in powerful
systems because of their possible run time overhead,
caused by object inheritance and late bindings (by
virtual methods).

PLC programming is often carried out using IEC
1131-3 programming tools and cross-development
environment, but this technology can be utilized
only if time dependencies are not very hard (cycle
time lower than single milliseconds is difficult to
achieve). The reason for relative low code efficiency
is that program code is interpreted in a cyclic man-
ner

1.4. Structural Programming

Structural programming consists in two funda-
mental principles:

• hierarchical top-down decomposition of the
problem to be solved and

• modularisation, i.e. writing code for con-
secutive levels of decomposition using sepa-
rate modules or functions.

Structural programming is not associated with
any particular programming language, although
high-level languages support better this approach
than machine-oriented languages.

1.5. Software Layers

The concept of software layers enables the pro-
grammer to concentrate on specific algorithms,
which can be isolated from lower level details.
Moreover, the modification of any algorithm within
this structure does not require changes in other lay-
ers. This approach we can find in system software
structures. As an example we consider a processing
of an I/O call in OS-9 real time operating system [2]:

• Any I/O call is directed to IOMan, which
represents the higher level of processing. It
establishes path, i.e. a connection between
the application and the appropriate file man-
ager and device driver.

• File managers perform the processing for a
particular class of devices, such as disks or
terminals. They deal with logical operations
on the class of devices.

• Device drivers operate on a class of hard-
ware. Operating on the actual hardware de-
vice, they send data to and from the device
on behalf of the file manager. They isolate
the file manager from hardware dependen-
cies such as control register organization and
data transfer modes, translating the file man-
ager’s logical requests into specific hardware
operations.

Another good known example we can find in
computer communications model known as Open
Systems Interconnection Reference Model (OSI).

OS-9 KernelOS-9 Kernel

IOManIOMan

ApplicationApplication

SCFSCF

sccVM62sccVM62

Manager Level

Driver Level

Hardware Level

Kernel Level
OS-9 KernelOS-9 Kernel

IOManIOMan

OS-9 KernelOS-9 Kernel

IOManIOMan

ApplicationApplication

SCFSCF

sccVM62sccVM62

Manager Level

Driver Level

Hardware Level

Kernel Level

Figure 1. OS-9 I/O levels

Protocol layers in this model represent different
levels of abstraction, starting from an application
services and ending at physical interface to commu-
nication channel.

2. SYSTEM FOR EXCAVATOR

A system for hydraulic excavator is in several
aspects similar to solution for any hydraulic heavy
machine. The main difference in relation to others is
more complex movement control. Project was based
on following assumptions:

• an excavator should behave as autonomous,
automatic (robotized) machine in a range of
simple tasks including typical activities of
digging a prescribed pit and loading output;
sophisticated tasks could be programmed by
operator or external (stationary) system us-
ing appropriate communications channel,

• system should support the machine operator
in a case of manual control (operator can
take the control over at any moment),

• system should supervise a machine status to
avoid a potential overloading and reduce the
probability of damage or failure,

• system should support optimising the work
process using several criterions depending
on soil type or / and operator decisions,

• for a research purpose system should pro-
vide data acquisition, i.e. to collect data from
sensors and other internal data.

System is still under development, so some ad-
vanced functions are not fully implemented as yet.

2.1. Functions of the System

Functions of the system can be divided into four
groups:

(a) movement control, work planning and strat-
egy optimising,

(b) manual control support and man / machine
interface,

(c) machine diagnostics and supervising,

(d) data acquisition and reporting.

Groups (a) and (b) are mutually excluded, though
during automated control several aspects of operator
interface are allowed to enable operator to supervise

the excavator. Functions (c) and (d) are independent
and executed concurrently to others.

Enumerated system functions form “vertical” or
“perpendicular” division of software structure. Each
of them is implemented using several separate proc-
esses executed in parallel. Some of these processes
are essential for more than one system functions –
they form layers of software structure.

2.2. Main Layers of Application Software

Application software can be divided into several
layers, making up “horizontal” split of software. In a
case of excavator system we obtain following fun-
damental layers:

• higher (planning, strategy) processing layer
(HPL)

• man / machine communication layer (MMI)

• lower (executing) processing layer (LPL)

• machine abstraction layer (MAL)

If we assume as a reference, that the lowest sys-
tem layer is made up of hardware (HW) and operat-
ing system services (OS), then directly above it we
have machine abstraction layer. Aim of MAL is to
allow processes from higher levels not to take care
about details of machine and system construction.
For example, if any process needs to know a pres-
sure in some point of hydraulic system, it should not
bother on details like sensor type, its characteristics,
channel number, or even if this sensor is local to
given system node or belongs to one of other nodes
within a network. This layer consists of several
sublayers, including interrupt handlers and network
communications. MAL processes are strongly time
dependent, so must be executed at highest priority
level.

Lower processing layer is build by these proc-
esses, which are responsible for real time functional-
ity but these dependencies are not so strong as in a
case of MAL. LPL is a layer of simple movement
control, diagnostics, data acquisition etc.

Hardware & Operating System

Machine Abstraction Layer

Lower Processing Layer

Man / Machine Interface Layer

Higher Processing Layer

st
ro

ng
er

 ti
m

e
de

pe
nd

en
ci

es

Hardware & Operating System

Machine Abstraction Layer

Lower Processing Layer

Man / Machine Interface Layer

Higher Processing Layer

st
ro

ng
er

 ti
m

e
de

pe
nd

en
ci

es

Figure 2. Software layers of the system

Man / machine communication, also called op-
erator interface, is responsible for passing on the
data to operator (local or remote), generating warn-
ings and alarms. Joysticks pedals or switches are
hardware part of this interface too. Operator can
choose several options of displaying parameters or
characteristics and using this interface can make
decisions and even program the machine itself.

LPL processes are a must for an automated ma-
chine, but “intelligence” of the machine is contained
within higher processing layer. HPL processes needs
more processing power but are not so strongly time
dependent as any processes from lower levels.

2.3. Hierarchy of Movement Control Processes

To illustrate the above discussed layers we can
shortly describe function 2.1.(a) – movement control
and movement planning.

At the lower level single axis is controlled based
on prescribed position and / or motion velocity.
These three simple controllers are in real system
implemented as single process. Combined axis
movements are resolved by coordination process,
which becomes trajectory description at its input. If
our system is not very “intelligent”, trajectory gen-
eration is predefined within a library and chosen by
operator. In this case system software does not con-
tain code of higher processing layer (HPL).

In a case of robotized excavator a trajectory is
generated by movement planning processes, accord-
ing to strategy and given limitations. Simple move-
ments are sequenced (joined) by a movement se-
quences planning process. This part of system is not
implemented yet. It must be preceded by detailed
examination and description of many movement
characteristics and strategies and requires a lot of
research tests. As a first result we expect to obtain a

knowledge base containing formal algorithmic de-
scriptions for a variety of possible movements.

3. CONCLUSIONS

Computer system for an “intelligent” excavator
is a sophisticated one. The only way for designing it
is a systematic approach taking into consideration
several aspects:

• hard real time requirements, because it has
to control complex movements,

• scalability – according to needs and re-
quests,

• cooperation with other machines and sys-
tems on the plant,

• modifiability and extendibility – because we
should apply new ideas avoiding to start pro-
ject from the very beginning.

Partial results can be useful in the future only if
they are precisely specified and make no use of
exotic and not expandable or not portable solutions.

REFERENCES

[1] Dobrowolski H. On-board computer system
for an excavator Proc. of ISARC (Int. Sym-
posium on Automation and Robotics in Con-
struction) XII, Warszawa 1995, vol.I pp.143-
149

[2] OS-9 Technical I/O Manual, Version 3.0
Microware Corporation 1993

Axes Movement Coordination

Single Movement Planning

Movement Sequence Planning

Trajectory Generation

Sensors Actuators

Single Axis Movement Control

HW

MAL

LPL

HPL

Axes Movement Coordination

Single Movement Planning

Movement Sequence Planning

Trajectory Generation

Sensors Actuators

Single Axis Movement Control

HW

MAL

LPL

HPL

Figure 3 Hierarchy of movement control and
planning processes

