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Abstract: This paper presents a mathematical formulation of non-smooth problem of
mechanics. Some non-smooth characteristics of chosen elements are presented on the
diagrams. These elements serve the purpose of representing unilateral limiters of
displacements and velocities, dry friction and pseudo-elasticity. The main feature of the
non-smooth problem is that for its formulation the non-differentiable functionals have to be
used. In the result, in the mathematical description of motion of the system there appear
multi-valued functions. Some examples of modelling of machines with non-smooth
elements have been presented.
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1. INTRODUCTION

The problems of mechanics, which for their
formulation require non-differentiable functionals,
are referred to as non-smooth ones. For example in
static problems of  mechanical systems, the use is
made of the potential energy. If there are bump-stops
in the system (unilateral constraints) or the pseudo-
elastic elements, then the functional of energy is non-
differentiable. The position of equilibrium of such a
system is determined by a solution of a non-smooth
static problem.

The motion of the mechanical system with
unilateral constraints or/and dry friction is described
by the non-smooth problem of dynamics. In such a
case the functional of potential energy and functional
of dissipation are non-differentiable.

To model machines for construction, the
mechanical systems with described above properties
are used. Therefore, the description of motion or
loading of the machine with bump-stops, clearances
or dry friction should be formulated as a non-smooth
problem of mechanics [3]. A specific feature of the
description of a non-smooth problem is that such
functions are involved, whose values are not
uniquely determined but belong to some range of
values. Additionally, a problem of the unique choice
of the value from a defined range arises. To describe
mathematically such problems the notions of convex
analysis are employed [1]. We present some of these
notions within a treatment of a non-smooth static
problem with unilateral constraints and pseudo-
elastic elements.

 2. NON-SMOOTH STATIC
PROBLEMS

Let us consider a mechanical system, whose
configuration is described by a vector of generalised
co-ordinates X RN∈ . We assume that the potential
energy of the system without constraints and pseudo-
elastic elements is described by the expression
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where

K RN N∈ ×  - a symmetric, strictly positive
matrix of rigidity;

F RN∈  - vector of generalised forces.

The static problem reduces to determination of
the position of equilibrium. A classical problem,
where the potential energy describes equation (1) is
formulated as follows:
find such a vector X RN∈ , that the functional Eo
takes the minimal value

( )ξ=
∈ξ

oNR
EminX arg  . (2)

Making use of the Lagrange condition, the
problem (2) can be presented in an equivalent
algebraic form:
find a vector  X RN∈ satisfying the equation of
equilibrium of   forces

KX F= .               (3)



Now, we are going to describe mathematically
properties, which make that the static problem is
non-smooth. The limiters (constraints) define
permissible positions of the system. These positions
can be described with a closed convex set Ω ⊂ RN ,
and the limitation with the condition

Ω∈X .               (4)

Reaction forces r RN∈  execute the limitation of
the positions. If we assume that execution is ideal,
then the potential of reaction forces is determined by
non-differentiable, indicatory functional of the set Ω,
i.e.:
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where ψΩ - is the potential of reaction forces.
The pseudo-elasticity is described by a set of

forces Θ ⊂ RN  and the principle of choosing the
force from the set. If we assume that the set is
convex and closed and the force S ∈Θ  is chosen in
an ideal manner, then the potential of the pseudo-
elasticity is defined by a non-differentiable
functional supporting the set Θ
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where Θ ⊂ RN  -is the set of pseudo-elastic forces.
The potential of a mechanical system with

constraints and pseudo-elasticity is described by a
functional containing components listed in
expressions (1) ,(5) and (6), i.e.:
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The formulation of a non-smooth static problem,
whose energy describes the non-differentiable
functional F, has an analogous form to that given by
(2):
find a vector X RN∈ , such that the functional
E takes a minimal value
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Due to assumptions referring to the matrix K and
sets Ω i Θ, the above problem has a unique solution.
Making use of the Kuhn-Tucker conditions [4], the
problem (8) can be described in the equivalent
algebraic form, analogous to expression (3)
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where ∂ is a symbol of sub-derivative of a convex
functional, that is, if Φ : R RN → 1 is a convex
functional, then

( ) ( ) ( ) ( ){ }NTN RzfzRfz ∈∀−≥Φ−Φ∈=Φ ζζζ∂ ,::
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The equation (9a) presents a condition of
equilibrium of forces acting on the system and the
set (9b) and (9c) describes relations between
reaction force or pseudo-elasticity and the position
of the system. These relations are referred to as the
energetic characteristics of constraints or pseudo-
elasticity. The form of these relations decides upon
the specific feature of non-smooth formulation of the
static problem, where the forces r and S are
described by multi-valued functions of positions.
This specific form of functions requires non-classical
methods of solution.

3. THE ELEMENTS OF MECHANICAL
SYSTEMS WITH NON-SMOOTH

     CHARACTERISTICS

In the previous chapter a general form of
description of non-smooth characteristics of the
mechanical system has been presented. We refer to
formulae (5) and (6) presenting the non-
differentiable functionals describing the potential of
generalised, ideal reaction force and pseudo-
elasticity. The equivalent form of description of
these features is included in formulae (9b) and (9c),
where the relations are given between said forces
and the position of the system. These relations are
called the generalised characteristics of unilateral
constraints and pseudo-elasticity. The generalised
form of the description, i.e. presented by the
generalised co-ordinates, is formulated on the basis
of description of the elements included in the system.
Below we present the basic elements with non-

smooth characteristics.

In Figure 1 a symbol of a limiter is shown, which
allows displacements satisfying condition
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Figure 1: A unilateral limiter



x x R x∈ = ∈ ≤Ω Ω ∆, : :1{ } .

On the right side of the drawing the plot of the
characteristic is shown, which is the relation between
the reaction force r and the displacement x. When
x = ∆x, the value of the reaction force r is not
uniquely defined as it belongs to a set of non-
negative numbers. Therefore, the mathematical
description of this characteristic can be written in the
form
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A symbol of a double limiter and the plot of its
characteristic are shown in Figure 2. In this case the
permissible displacements satisfy the condition

{ }∆≤≤∆−∈=ΩΩ∈ x:Rx:,x 1

A symbol of and the characteristic of the pseudo-
elastic element are presented in Figure 3.

A specific feature of this element is, that the force S
should satisfy the following condition

S S R S S So o∈ = ∈ − ≤ ≤Θ Θ, : :1{ }.

This element serves to reproduce in modelling
the devices with pre-loaded spring. A schematic
drawing of such a device and its model are shown in
Figure 4.

All described elements characterise the energetic
features of the mechanical system related to
accumulation of the potential energy.

The mechanical systems frequently contain
elements with non-smooth characteristics, which are
responsible for dissipation of energy. Dry friction
and/or the velocity limiters are reproduced in mod-
elling with such elements.

The ability of the mechanical system to dissipate
energy determines the functional of dissipation (the
function of Rayleigh). If a mechanical system has
properties represented by the above elements, then
the functional is not differentiable and its form is
analogous to that given by (7).

( ) ( ) ( ) ( )VVVDVD
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where
V RN∈  - generalised velocities vector;
  D R RN: → 1 - functional of dissipation;

D R Ro
N: → 1 - functional defining differen-

 tiable part of D;

Ωd
NR⊂  - set defining permissible velo-

cities;
Θd

NR⊂  - set defining permissible values of
dry friction forces.
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Figure 2: A double limiter with clearances
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Figure3: Pseudo-elastic element
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Figure 4: Pseudo-elastic element combined  with
spring
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Figure 5: Dry friction slider

The dissipative characteristic of the damping
element defines the relation between the force and
velocity. Figure 5 shows the graphical symbol of
friction element and the diagram of its characteristic.

The force arising in this element satisfies the
condition

T T R T T Td d o o∈ = ∈ − ≤ ≤Θ Θ, : :1{ } .

The graphical symbol of the velocity limiter and
its characteristic are presented in Figure 6. The
limiter allows for velocities satisfying the following
condition

v v R vd d∈ = ∈ ≤Ω Ω, : :1 0{ } .

Described above basic elements with non-smooth
characteristics are used to represent the
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Figure 6: Velocity limiter

characteristics of various units and elements of
machines [2].

4. EXAMPLES OF MACHINE DRIVING
SYSTEM MODELLING

As the first example the simplest driving system
is considered, which consists of two flywheels
coupled by the friction clutch. The schematic
drawing of the system and the clutch characteristic
are shown in Figure 7. With controlled normal load
of the clutch disks, the moment ( )tMo  is not
constant.
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 where:
J J1 2,  - moments of inertia of flywheels;
   ω ω1 2,  -  angular velocities;
M Mn ob,  - driving and opposing moments

respectively;
MT  - moment transmitted by clutch;
 ωs - angular slip velocity of the clutch;
    τ - friction moment multiplier;
   ρ - arbitrary positive number;

  Π(.) -a function defined by
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Figure 7: A transmission system with friction clutch

The equations (12a) describe motion of wheels.
The relations (12b), (12c) describe the friction clutch
with the characteristic shown in Figure 7. Analysing
the plot of the characteristic or the equivalent
description (12c), it is easy to notice that if ωs = 0,
then the moment transmitted by the clutch is defined
by the inequality ( ) ( )tMMtM oTo ≤≤− . To define
the value of the moment MT  in this situation, it is
necessary to complete the set of equation (12) with



the differential succession of the clutch
characteristic, which has a form [3]

( ) 0, =+Π= ss gdyωωρττ � .  (14)

The equations (12) and (14) make it possible to
uniquely determine the moment transmitted by the
clutch for any velocity, i.e.: if  ωs ≠ 0, then

( )tMignM osT ⋅ω= s , else (ωs = 0), MT  is
determined  by (12a), (12b), and (14).

This simple example illustrates the principle of
description of the system containing elements with
non-smooth characteristic. A peculiarity of the
problem is that in some states of the system (here
ωs = 0) the description becomes non-unique and it is
necessary to formulate the additional conditions,
which make the description unique.

Using the same principle it is possible to
formulate the description of motion of the driving
system shown in Figure 8. In this example the
flywheels are coupled by the ratchet-wheel with the
characteristic as in the right side of Figure 8. The
ratchet-wheel corresponds to the velocity limiter of
Figure 6.
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Figure 8: Transmission system with velocity limiter
(ratchet wheel)

The equations of motion have a form
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where

MR  - moment transmitted by ratchet wheel,

⋅ +  - a function, such that
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The equation (15b) describes the characteristic of
Figure 8. The meaning of variables and parameters is
given after equations (12).

The equations (15) and (16) make it possible to
determine motion of flywheels and the moment
transmitted by the ratchet-wheel.

5. FREE VIBRATIONS OF A SIMPLE
SUSPENSION SYSTEM WITH
    DRY FRICTION DAMPER

This simple example is concerned with a system
where the dry friction element of Figure 5 (a friction
slider) is combined with springs and serves as a
damper in a suspension system shown in Figure 9.

The equations of free vibrations of the system are
written for the system of Figure 9b, where the spring

1k and friction slider are replaced by the force of
friction T.
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This description involves differential succession of
the friction force T. The function [ ]+.  has the form
(16).
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Figure 9: a) Simple mechanical model
                   b) Replacement system
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Figure 10:  Time histories of free vibrations

A sample numerical solution has been calculated
for mass M=450kg. Other parameters are:
T N k N m k N mo = = =200 40000 600001, , , .
The initial conditions are:
 for t = 0, Y= 0,   dY/dt = 0.6 m/s, T= 0.

The equations of motion have been numerically
integrated using a simple time-stepping routine with
a constant time step of integration. The time histories
of free vibrations are plotted in Figure 10. The plots
present the displacement Y and the friction force T.

Initially, due to damping by dry friction,
vibrations decay with a linear envelope. During this
period there is reciprocating sliding in the friction
slider causing dissipation. When displacements
become small enough, sliding and dissipation cease
but the force in the stuck slider oscillates as it is
induced by deflections of the spring in series with
the slider. The amplitude of the force T is marginally
smaller than the break force To.

6. FINAL REMARK

Presented descriptions of non-smooth problems
of mechanics have been used to work out
mathematical models of machines, where dry friction
or the limiters influence machine motion and
loading. The significance of formulated problems for
analysis of machines is especially pronounced for
extreme operating conditions.
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