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Abstract: problems of pneumatic manipulators positioning in angle trajectories and in long
linear trajectories for construction applications are discussed. Optimal positioning of a
pneumatic manipulator of angle trajectories with minimum control energy consumption is
solved. An implementation of the control system is presented. A control algorithm for a
pneumatic manipulator of long linear trajectories based on a two-phase movement of the end-
effector is investigated. Experimental results are shown.
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1. INTRODUCTION

Advantages of pneumatic manipulators for
construction applications are high speed and force
capabilities and smaller sizes, compared to electric
driven manipulators. Pneumatic manipulators have a
high payload-to-weight ratio that is especially
important for their usage with wall climbing robots to
fulfill different construction operations [1,2]. An
essential application limitation of industrial
pneumatic manipulator is the difficulty to change a
given program for the end-effector trajectories during
motion and a limited number of discrete positions.

A hierarchical feedback control for pneumatic
manipulators was proposed in [3]. However, it is
difficult to compensate payload and supply pressure
variation in such way. A pneumatic manipulator
control based on recursive identification is described
in [4]. A stability of this controlled motion is not
guaranteed. It was concluded in [5] that the third-
order control provides a practical choice for effective
control of industrial pneumatic manipulators.
Sometimes, in practice, it is impossible to measure a
full phase vector because of design parameters of the
manipulator [6]. A problem of minimising of sensors
number for optimal control is important in this case
[7].

The task of flexible positioning system design
applying a sensor block in a feedback loop is
discussed for a widespread type of industrial robots
with an angle manipulator drive of two double-acting
pneumatic power cylinders.

Some building inspection operations require
working in long linear trajectories with good position

accuracy. This may be carried out by means of long
cylinders with necessary technological equipment
connected to an end-effector. The main difficulties in
this case are to combine velocity during the motion
with high accuracy at the desired positioning.

Those problems of the pneumatic manipulators
positioning for construction applications are
considered.

2. POSITIONING OF A PNEUMATIC
MANIPULATOR IN ANGLE TRAJECTORIES

2.1 Description of the system

A diagram of the manipulator drive is
presented in Figure 1.

The manipulator 1 of a length L and a
gripper with an object 2 of mass m, is actuated by
double-acting pneumatic power cylinders 3 through a
gear 4 with a lever l. The considered drive system
with pressure variation in pneumatic power cylinders
[8], is described by a non-linear differential equations
of the third order
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Figure. 1.  Diagram of the manipulator drive

where ϕ - angular position of the manipulator
gripper, p - current pressure difference in pneumatic
cylinder volumes, Fп – cross-section of the cylinder
piston, l  - lever of acting force, R - gas constant, T -
absolute temperature of working gas, V – full volume
of the pneumatic cylinder, P - pressure in the
volumes of the cylinder in an equilibrium position of
a cylinder piston, g - molar gas consumption in
pneumatic cylinder volumes, ( )ϕ�f  - summand
taking into account a friction force of the drive
system. The force of inertia for rather large values of
mass m considerably exceeds friction force in the
drive system. In this case it is possible to transform a
system (1) as follows
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Thus, phase coordinates of the system are an
angular position and angular velocity of the
manipulator gripper and pressure in pneumatic power
cylinders. A control parameter is the gas
consumption.

A problem of minimization of positioning
coordinates of the system (2) and simultaneously of
control energy consumptions should be solved. It is
possible to solve this optimal control task by means
of the following quadratic functional
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where ϕ=2x , px =3 , g
V
RTu = , and r2, r3,

ρ  - coefficients depending on construction task. The
control of the system is carried out by means of a gas
consumption valve. Information about a current
system state is obtained from the sensor block.

2.2  Synthesis of the control system

For the considered stationary system, we can use the
equation [9]

      01
21 =++′− − PAAPPBPBRR ,            (5)

where the matrixes A and B are determined according
to [7], and
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An optimal control of the system (2), (4) can be
written as following
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where the elements i = 1, 2, 3 are amplifying
coefficients in the feedback loop of the control
system.

The problem of the optimal control is reduced to
a determination of necessary elements of the matrix
Р, which can be obtained from the equation (5). For
such a purpose a solution algorithm of the equation
(5) for stationary systems with infinite time of
observation [9] can be used.

Let us introduce the following matrix
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and an expression for a matrix

          RI −λ ,                                        (10)

where I - identity matrix, λ  - eigenvalue of the
matrix (9). A determinant of the matrix (10) is

det( RI −λ )=
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then, rewriting expression for det ( RI −λ ) with
using of (11) and equating it to zero, we have
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It is possible to solve the equation (12) using
equations (3) and defining 1λ , 2λ , 3λ  that lye to the
left of an imaginary axis.

We can introduce the determinant of the matrix
(10) as

      )()()1()det( λλλ −∆∆−=− nRI ,            (13)

where )(λ∆ - scalar polynomial of power n. Thus,

   ))()(()( 321 λλλλλλλ −−−=∆ .             (14)
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Figure 2. Implementation of the optimal control



Substituting values 1λ , 2λ , 3λ  in equation (14), we

can obtain a numerical value for )(λ∆ . Then,
making a substitution λ and R, we form a matrix
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The matrix R is defined by the equation (9) and
can be presented as
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Now it is possible to get values R2 and R4 from
equations (15) and (16).  According to [9],
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Necessary elements of the matrix Р are defined
from the equation (17).  Using them in the equation
(8), we obtain the optimal control as
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The system by the optimal control (18) is
asymptotically stable. Experimental results with a
manipulator of the robot “Tsiclon” [7] show that all
disturbances are converged to zero in an exponential
manner. Response time is about 1 second.

An implementation of the optimal control (18)
with a simulation of the object (2) is shown in Figure
2.

3. POSITIONING OF A PNEUMATIC
MANIPULATOR IN LONG LINEAR

TRAJECTORIES

3.1  Description of the system

Some building inspection operations require
working in long linear trajectories with good
positional accuracy. This may be carried out by
means of long cylinders with necessary technological
equipment connected to an end-effector. The main
difficulties in this case are to combine velocity
during the motion with high accuracy at the desired
positioning.

A rodless pneumatic manipulator can be applied
to fulfil the described task. A diagram of the
manipulator is shown in Figure 3.
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Figure 3. Diagram of the linear pneumatic
manipulator

The manipulator has a rodless pneumatic cylinder
with the piston connected to the tool of the mass M to
be moved. The tool position is measured by an
incremental optical encoder. The air flow in cylinder
chambers is controlled by a current commanded
proportional valve. The control algorithm is run by
means of a microcontroller that interfaces to the
encoder and to the valve through a 12 bit digital-to-
analog converter (DAC). The system is monitored by
a PC connected by a RS232 serial interface to the
controller.

The general view of the system is shown in
Figure 4.

Figure 4. General view of the long linear trajectory
manipulator

The system has five degrees of freedom. There
are three degrees of freedom related to transporting
motion (x, y, z), rotation motion of the gripper, and
gripping motion. X motion is performed by a linear
stage composed by an Origa P210 rodless cylinder
with 1200 mm stroke and 25 mm piston diameter.
The payload moved by this cylinder is 46 kg and the
medium static friction is 3.5 kgf. The end-effector



position is measured with 20 µm accuracy by a rotary
incremental encoder toothed to the fixed structure.
The airflow is controlled by a Martonair SQPB1898
5/3 proportional valve. The current through the valve
solenoid defines five working zones: from 0 to 300
mA the valve is completely open in one direction (say
A); from 300 to 500 mA the flow in direction A
changes linearly; from 500 to 600 mA the valve is
closed; from 600 to 800 mA the flow changes linearly
in the other direction (say B); above 800 mA the
valve is completely open in direction B. The valve
electrical current is controlled with a 12 bits accuracy
DAC. The working pressure is 6 bar and the
connecting nylon tubes of 4 mm interior diameter. In
order to deal with the solenoid hysteresis, the
command current is summed with a 50 Hz sinusoidal
current. In order to not disturb the system, the
frequency of the summed signal was chosen much
higher then the frequency of the system (less then 2
Hz depending on the command amplitude).

The dynamics of pressure Pi in the i-th chamber
can be described by the following equation
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where Si is the valve cross-sectional area, k is the
ratio of specific heats, x is the piston position,
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where Ti is absolute temperature, R is the universal
gas constant, Pu and Pd are upper and lower pressures
correspondingly and Y is a constant coefficient [12],

ivi ukS ≅ , (21)

where kν is the valve proportional constant and ui is
the valve input signal.

The system dynamics can be modeled by the
following equation

( )L RMx Bx L A P P+ + = −�� � (22)

where M represents the moving mass, B is the
viscous-damping coefficient, L represents
disturbances because of static and Coulomb friction,
A is the piston area and PL and PR are the pressures in
left and right chambers correspondingly.

Experimental research of the rodless pneumatic
manipulator shows that friction has essential
influence on a control algorithm of this system. From
the other side, friction has a stochastic character
sometimes.

In this case, one of the most reliable solutions to
control the system is an experimental approach.

3.2  Experimental optimisation

To achieve high accuracy and high velocity at the
same time, with minimum overshoot and settling
time, it could be used a control algorithm based on a
two-phase movement of the end-effector [10]. Figure
5 shows the valve control signal.

Figure 5. Command signal versus time in seconds

Figure 6 shows the output position in time for a
125 mm long trajectory experiment.

Figure 6. Position versus time in seconds

At the first phase, the motion is carried out with
high velocity till the end-effector reaches 80% length
of the trajectory. This phase is done with a high gain
proportional controller.

The second phase is the approaching phase. It is
carried out with a PI controller with small
proportional gain [11].

The achieved results using experimental
optimisation were satisfactory, with a maximum
steady state position error of 0.3 mm. As can be seen
from Fig. 6, the system stabilizes in less then 0.5
seconds.
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