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Abstract: We present some novel concepts for the scene geometry recovery by a multi-camera system. A new 
global appearance measure is introduced for a novel generalized scene recovery methodology, called “the 
appearance-cloning.” 

For the efficient calibration of the multi-camera system, we investigate the projective properties of the 
concentric circle pattern. Specifically, two algebraic constraints from concentric circles are defined to calibrate 
the intrinsic parameters of the multi-camera system. Through a variety of scene reconstruction experiments, we 
demonstrate that the use of concentric circles greatly simplifies the calibration problem for the photo-realistic 
recovery of dynamic 3D scene. 
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1. INTRODUCTION 
 

Recent advances in image-based rendering 
approaches (view morphing, light field rendering) 
make it possible generate a photo-realistic novel view 
only from photographed images without scene 
geometry information [1-5]. Many applications, 
however, still require the correct scene geometry 
information in image based modeling and rendering 
(IBMR). 

Computer vision techniques to extract the 
geometric information of real-world scene for IBMR 
can be categorized according to the sensing 
technology into either the active or passive sensing 
approaches. 

Active sensing technologies (e.g., optical, laser, 
and time-of-flight range finder) normally provide 
high accuracy and good quality of 3D measurements. 
Many commercial solutions have been widely applied 
to various IBMR systems that use the scene geometry 
information. However, in most cases, the geometry 
information acquired from the active sensing 
technology should be combined with photographs for 
the photo-realistic 3D model generation and 
rendering. Moreover, the 3D scanner is still very 
expensive for the general consumers compared with 
the passive sensors such as a digital camera and cam-
coder. 

On the other hand, the passive sensing technology 
directly recovers the scene geometry information 
from a set of photographs, so no additional sensor is 
needed for IBMR. Moreover, digital cameras are 
available at a reasonable price. Therefore, 3D scene 
recovery by the passive sensing technology has 
attracted a great deal of attentions during the last 
several decades, and many elegant methodologies 
have been introduced and demonstrated those 
viabilities at each specialized application area and 
conditions. However, those methodologies are still 
hard to be a solution for our generalized scene 

recovery problem because of many hard-to-set ad 
hoc factors such as scene dependent control 
parameters, assumptions, and constraints [6-15] 

For a methodology to be a practical solution for 
the generalized scene recovery problem, it should not 
rely on any ad hoc parameters to be set.  

In this paper, we introduce a novel “global 
appearance measure” instead of local measures, and 
then propose a novel methodology, called “the 
appearance-cloning”, as a solution to the generalized 
scene recovery problem.  

For the scene recovery by a multi-camera system, 
an effective camera calibration method is necessary 
to deal with the partial views of calibration pattern by 
the multi-camera system. We develop a novel 
calibration pattern of concentric circles that can be 
extracted even with small partial view of the circle 
pattern. A two-step camera calibration method 
estimates the intrinsic camera parameters and the 
camera pose parameters. The proposed constraint 
properties of concentric circle patterns have concrete 
physical meanings, such as the position of the 
projected circle center and the projected radius-0 
imaginary circle. Based on the constraints of the 
concentric circles, the intrinsic parameter is 
estimated from the image of the concentric circles 
without any assumption about a camera with three or 
more views.  

 
2. APPEARANCE CLONING 
 

Since the recovery of real-world scene from a set 
of photographs is generally ill-posed problem [6], the 
best that we can recover from photographs is the 
maximal photo-consistent 3D model that is re-
projected into all the original photographs and 
reproduces those photographs [7]. Many previous 
researches have tried to find this maximal photo-
consistent 3D model from photographs, and recent 
several volumetric approaches have introduced 



promising methodologies by representing the 
recovered shape information in a common volumetric 
space defined by user.  

The use of this common 3D space elegantly solves 
the view-dependent self-occlusion problem of 
arbitrarily-shaped scene, and makes the traditional 
“correspondence search problem” in 2D image spaces 
to be reformulated as the “occupancy decision 
problem” of each 3D primitive in the volumetric 
space by using the normalized cross-correlation 
measure of oriented 3D patch on a grid point [8] or 
the photo-consistency measure in a voxel [9]. 

Now, how can we recover the photo-consistent 3D 
model by using a global appearance measure? As 
shown in Figure 1, the global appearance measure is 
the photograph itself that is projected from the real-
world scene to a known camera viewpoint. We can 
make the equivalent system in the digital domain in 
which we can control full operations. We first define 
a candidate 3D model in our digital domain, and then 
render this model to the known camera viewpoints. 
Through this process, we can get another global 
appearance which is composed of view-dependent 
appearances of candidate 3D model and has one-to-
one correspondence with the given global 
appearance.  

Then, we can get the photo-consistency of 
candidate 3D model about given photographs by 
directly comparing the appearance similarity between 
the given appearances and recovered appearances. 
And then, we can control our 3D model by using the 
appearance similarity error because we exactly know 
the relationship between the recovered appearance 
and our 3D model. Through these iterative 
operations, we can find the optimal photo-consistent 
3D model by cloning the global appearance of given 
photographs. We call this methodology as “the 
appearance-cloning.” If our equivalent system can 
correctly resemble the actual projection relationship 
from the real-world scene to each camera viewpoint 
and enough appearances are given to us, then the 
recovered 3D model can perfectly regenerate given 
photographs and can be a photo-consistent clone of 
the real-world scene according to the chain-rule.  

 
2.1 Modeling of digital 3D model space  
 

To represent the real-world scene in our digital 
domain, we use the voxel as a basic primitive. We 
define the voxel as a single-colored opaque cubic 
volume. Consequently, the state of each voxel can be 
either opaque or transparent in the voxel space.  

Now, define a voxel space 3ℜ∈V  that encloses 
the scene with a comfortable margin and is composed 
of ),,( WHL  voxels. Since we define the voxel as a 
cubical volume, each voxel V∈v  projects to 
several pixels per visible camera (i.e., follows the 
volume-projection). Then, the scene can be 
approximately represented as a combination of 
opaque and colored surface voxels. Let such a 

combination of opaque surface voxels be a candidate 
3D modelS . Then, there are WHL ××2  candidate 3D 
models. The optimal photo-consistent 3D 
model ∗

S that we want to find is one of those 
candidate 3D models. Let V2  be the set of those 
candidate 3D models. Then, VS 2∈∗ . We 
call V2 digital 3D model space.  

These complete candidate 3D models can be 
rendered to each camera viewpoint, which is used to 
capture given appearance, and then we can get the 
recovered appearances from those candidate 3D 
models.  

 

 
Figure 1. Appearance cloning: Left) the real-world 

projection relationship. Right) the equivalent digital-
world rendering relationship. 

 
2.2 Appearance similarity measure  
 

Now, we can directly compare the appearance 
similarity between given appearances and recovered 
appearances. However, in most of scene recovery 
from multi-view images, the real-world scene is not 
observed in whole image region. We adopt the region 
of interest (ROI) to exclude those projected regions 
of uninteresting scenes. If our interesting scene is a 
single real-world object, ROI of each image is 
exactly the same with the inside silhouette region of 
projected object. However, since we can directly 
recover multiple real-world objects or landscape, we 
use the notion of ROI rather than silhouette. In actual 
scene recovery, this ROI can be automatically 
extracted by using the blue screen technique, or 
manually extracted by using a tool like the intelligent 
scissor [16] or its variants. 

From now on, suppose that the ROI information of 
the given input images is known as a prior 
knowledge. Before defining appearance similarity 
measure of a candidate 3D model, we use several 
notations. Let I be the given appearances within 
ROI of input photographs and )(SR be the one-to-one 
corresponding recovered appearances rendered from 
a candidate 3D modelS . LetP be the set of all ROI 
pixels in the given input photographs. Then, we can 
derive the uniqueness constraint from the ROI 
information of input photographs: 



[Uniqueness constraint] 
If a candidate 3D modelS is to be a candidate of 

photo-consistent 3D model, every pixel P∈p on the 
recovered appearances )(SR must have its own 
occupying voxel S∈v  and each surface 
voxel S∈v should not project to the outside of ROI at 
any camera viewpoint. 

 
This uniqueness constraint greatly reduces the 

number of meaningful candidate 3D models in our 
3D model space V2 . Let CV2 be the set of candidate 
3D models satisfying the uniqueness constraint. 
Then, VCV 22 ⊂ and CVS 2∈∗ . From now on, we 
consider a candidate 3D model CVS 2∈ , except where 
noted.  

To define the appearance similarity 
measure )|Pr( IS of a candidate 3D modelS , we use 
the Bayes’ theorem  

∑
∈

=

CVH
S
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Here, if the prior probability is uniform for all 
candidate shapes, then )|Pr()|Pr( SIIS ∝ . 

Let )( pIc be the pixel color of given appearance 
image at a pixel P∈p and )|( SpRc  be the pixel 
color of corresponding recovered appearance image 
under the candidate 3D model S . Then, the 
appearance similarity measure of a candidate 3D 
modelS can be defined as 

 [ ]∏
∈
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where ]|[ θop is a probability model of each 
pixel P∈p , which has a control parameter vectorθ , 
that returns the reliability of )|( SpRc  
about )( pIc .  

Now, the remainder for the appearance similarity 
measure is how to define ]|[ θop . Although we have 
to use the probability model because of volumetric 
approximation of scene surface, we can inversely use 
the properties of volume-projection to model ]|[ θop .  

 
2.3 Per-pixel statistical modeling 
 

Since )( pIc is given as an evidence, we have to 
model the probabilistic characteristics of )|( SpRc  
in ]|[ θop . In practice, )|( SpRc is the color of 
which a voxel ( S∈v ) occupy that pixel ( P∈p ). 
Therefore, )|( SpRc is the function of candidate 3D 
model and we cannot directly estimate its 
characteristics in the 3D model space. On the other 
hand, if we approach inversely from the image space, 
we can estimate its characteristics from the physical 

volume-projection relationship between a pixel and 
its occupying voxels.  

The evidence that is given to use is only the view-
dependent appearances of real-world scene. 
Fortunately, we have a solution, which can estimate 
candidate )|( SpRc  (i.e., voxel color) from 
neighborhood color information centered on each 
pixel P∈p , by using the physical volume-
projection relationship.  

To derive per-pixel probability model, we use the 
Euclidean color distance as a color similarity 
measure 

)()|()|( pppx IR cc −= SS      (3) 
and assume that the intensity difference of each 

color-channel follows the zero-mean Gaussian 
distribution. 

 

 

Figure 2. Maxwell distributions according the control 
parameter s 

 
Then, the random variable )|( Spx follows the 

Maxwell distribution [17] 
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where ),0[ ∞∈x . )( ps is the control parameter 
of Maxwell model.  

 
In this Maxwell model, the control 

parameter )( ps guides )|( Spx to be the statistically 

optimal distance )(2 ps , and strongly constrains 

the allowable )|( Spx , as shown in Figure 2. 
Therefore, we can substitute this self-constrained 
per-pixel Maxwell model )](|)|([ pspxp S  
for ]|[ θop in Eq. (3). Then we can get the reliability 
of recovered appearance color )|( SpRc  
about )( pIc from the per-pixel Maxwell model. 

Now, we can estimate per-pixel Maxwell model 
for each pixel P∈p by fitting the control 
parameter )( ps to the color statistics of candidate 
voxel colors.  

Fortunately, the control parameter )( ps of 
Maxwell model has following relationship 
with )|( Spx    



)]|([
22

1)( SpxEps π
=          (5) 

where )]|([ SpxE is the expectation 
of )()|()|( pppx IR cc −= SS centered on )( pIc .  

Since we can substitute )|( SpRc with our 
candidate voxel color, the per-pixel Maxwell model 
can be estimated with the closed-form solution. 
Let )(~ pc be the candidate voxel color that is 
estimated from two constraints of volume-projection. 
Then, we can estimate this )(~ pc with very simple 
shifted average footprint operation. 
 
3. MULTI-CAMERA CALIBRATION 
USING CONCENTRIC CIRCLES 
 
3.1 Algebraic constraints: rank deficiency 
 

Without loss of generality, we can assume that the 
concentric circle center coincide with the origin of 
the world coordinate system. The circle Q is a 
diagonal matrix whose elements are [1,1,-ρ2]. From 
these algebraic properties, we can derive some 
algebraic constraints of the projected concentric 
circle matrices. 

Two ellipses from the same homography 
[ ]TrrCP 21=  satisfy  

1T PQPA −−= 111λ , 1
2

T
2 PQPA −−=2λ   (6) 

where C is a camera matrix and rn is a rotation 
vector. 

Taking the inverse on Eq (6) gives 
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The circle matrices Q1 and Q2 are simply diagonal 
as 

),1,1(),,1,1( 2
2

2
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Their inverse matrices are   
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From Eq. (12), the rank of both sides of Eq. (10) 
must be one.  

We can rewrite Eq. (10) as 
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Because we assume that the concentric circle 
center is equal to the origin of the world coordinate 
system, CT describes the position of the projected 

circle center.  The resulting homogeneous 
coordinate removes a scale factor relating to radii.  

Moreover, the matrices of the imaged concentric 
circles have the other constraint – rank 2 constraint. 
This is because the circle matrices Q1 and Q2 have 
two repeated elements as in Eq. (9). 

The rank-2 subtractive matrix of Q1 and Q2 is 
intuitively given by 
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This property holds if we assume the non-
degenerate case of the projections. Once we find the 
suitable ratio of scale factor β, there exists the rank-2 
subtractive matrix 2∆A  defined by  

21∆ AAA −=
∆

β2
              (13) 

The resulting 2∆A  has an interesting physical 
meaning. Because of the homogeneity of the 
coordinates, the resulting matrix is expressed as 

1T
∆ PPA −− )0,1,1(~2 diag         (14) 

From Eq. (14), 2∆A  is the projected imaginary 
circle whose radius is zero.  

A final remaining problem is how to determine the 
relative scale factors α and β. There are various ways 
to determine them, and we suggest a method to find 
it by setting the scale factor with the generalized 
eigenvalues of A1 and A2 [18]. Due to the special 
form of the concentric circle matrices, the 
generalized eigenvalues must have two repeated ones 
and single distinct one. For rank one case, the 
repeated one is selected as a scale factor. Selecting 
single distinct one as a scale factor makes rank two 
subtractive matrix. 

 
3.2 Intrinsic parameters from concentric circles 
 

As described in [19], once the IAC is determined, 
the intrinsic parameters are obtained directly. 
Furthermore, the IAC can be estimated with six or 
more imaged circular points. In this section, we show 
that one set of the image of the concentric circles is 
sufficient to find a pair of imaged circular points. 

The imaged circular points are on the vanishing 
line, as well as on the image of an imaginary conic 
whose radius is 0. The image of the radius-0 circle 
can be extracted up to scale factor using the rank-2 
constraint. The projected imaginary conic is 
expressed as Eq. (14). 

The vanishing line pl extracted from a conic is 

cAxlp =             (15) 
where A is the ellipse matrix and xc is the 

projected circle centers [20]. 
In this case, the imaged circular points are the 

intersection of the projected radius-0 conic 2∆A  and 
the vanishing line of the plane pl . 



The position of the projected circle center can be 
estimated from the algebraic rank-1 decomposition 
property.  

However, comparing to the conventional point 
correspondence based algorithm, the proposed 
algorithm can estimate the intrinsic parameters only 
with partial views of concentric circles due to 
occlusion or limitation of field of view. Also, we 
don’t need any kind of Euclidean measurements like 
lengths or even radii of the circles.  

 
3.3 Experiments 
 

The noise characteristic of the proposed calibration 
algorithm has been tested using synthetic data with 
respect to the numbers of views and the number of 
concentric circles. In practical case, the error is 
mainly caused by the quantization error of the edge 
points. The performance of this algorithm is analyzed 
under practical edge quantization noise that is in one 
pixel. The results are shown in Table 1. As expected, 
the performance of the proposed calibration 
algorithm improves as the numbers of views and 
circles increase.  

 
Table 1. RMS error in focal length estimation 
(relative error) with edge quantization noise 

 Error in αu (%) Error in αv (%)
3 views with 2 circles 

(minimal case) 2.2952 1.5385 

4 views with 2 circles 1.192 0.743 
5 views with 2 circles 0.9264 0.5258 
3 views with 3 circles 0.6514 0.3609 
4 views with 3 circles 0.5064 0.3301 
5 views with 3 circles 0.4427 0.2830 

 
4. EXPERIMENTAL RESULTS   
 

To show the practicality of the proposed algorithm, 
we applied it to multi-camera calibration. Figure 3 
shows a camera setup, consisting of ten SONY DFW-
V500 cameras, for the reconstruction of 3-D scene. In 
this case, the captured images suffer from FOV 
limitation. Figure 4 shows some captured images 
which are used for the calibration of intrinsic 
parameters. For camera calibration, we used nine 
images selected for each camera. Figures 5 and 6 
show some of captured images and synthesized views 
from the 3-D reconstruction result using ‘the 
appearance-cloning’, respectively. Figure 5 shows 
one set of dynamic image sequences and full 
sequences can be reconstructed using the same 
framework. 

Figure 7 shows some of ‘Marble dataset’ and their 
corresponding image and re-synthesized views using 
various reconstruction methods. To verify the 
accuracy of the reconstructed scene, the depth map is 
also shown. Note that the result from the proposed 
method is much similar to the ground truth. 

Figure 8 shows one of ‘Junglimsaji pagoda 
dataset’ which are taken from one of Korean 
National Heritages by a digital hand-held camcoder. 
It shows that our optimization-based scene recovery 
can refine the scene geometry relatively well with 
pictures taken outdoor. 

 

 
Figure 3. Multi-camera setup 

 

   
Figure 4. Examples of images for calibration in 

multi-camera system 
 

   

 
Figure 5. Examples of captured images  

 

   
Figure 6. Examples of synthesized images 

 
5. CONCLUSION   
 

We have interpreted the photograph as a view-
dependent appearance instead of combination of 
projected surface colors that is commonly adopted 
interpretation for the scene recovery. Based on this 
novel interpretation, we have introduced a new 
methodology, called “the appearance-cloning”, in 
which we simulate the photographing mechanism of 
real world in our digital domain. Through our 
resembled mechanism, we can generate recovered 
appearances of our candidate 3D model that are one-



to-one corresponding to given appearances acquired 
from the real-world scene. Then, we have controlled 
our candidate 3D model by using our appearance 
similarity measure so that the recovered appearances 
resemble the given appearances. 

For the practical implementation of multi-camera 
system, we propose a two-step camera calibration 
method using concentric circles. First, we calibrate 
each camera intrinsically, and the camera pose are 
subsequently estimated. The proposed constraint 
properties of concentric circles provide concrete 
physical meanings, such as the position of the 
projected circle center and the projected radius-0 
imaginary circle. Based on the constraints of the 
concentric circles, we develop a new camera 
calibration algorithm.  

We demonstrate that the photo-realistic scene 
reconstruction for indoor, outdoor and dynamic 
environments is feasible using some real-image sets 
by a multi-camera system or a single moving camera. 
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Figure 7 Qualitative comparison: First row shows the photometric recovery. Second row shows the 

geometric recovery. (a) Active 3D scanner. (b) Volume intersection (VI) - initial. (c) Probabilistic voxel 
Coloring (PVC) [14]. (d) Error optimization with the generalized voxel coloring (GVC/EO) [12]. (e) 

Appearance-cloning (Proposed).  
 

 
 

Figure 8. Scene recovery of Junglimsaji Pagoda dataset: (a) shows two of input images. (b) shows the 
recovered appearance image and depth map of initial visual hull. (c) shows those of recovered optimal 3D 

model using our appearance-cloning algorithm. 
 
 



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /Unknown

  /Description <<
    /ENU (Use these settings to create PDF documents with higher image resolution for high quality pre-press printing. The PDF documents can be opened with Acrobat and Reader 5.0 and later. These settings require font embedding.)
    /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308030d730ea30d730ec30b9537052377528306e00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


