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Abstract: Conceptual cost estimation during the early stage of a construction project plays 
important role for feasibility analysis and project planning. Traditional approaches rely 
heavily on experienced engineers, and may cause loss of conceptual estimation 
knowledge of the firm. This paper proposes a method integrates a previous developed 
conceptual cost estimation method (PIREM) with the ANFIS neuro-fuzzy system for 
mining of cost estimation data. A case study of residential building projects in Mainland 
China is conducted to test the proposed method. The testing results show that the 
proposed method does not only achieve high system accuracy, but also provide many 
features desirable for estimators such as explicit fuzzy decision rules and graphical 
sensitivity analysis presentation. 
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1. INTRODUCTION 

The conceptual cost estimation during the 
engineering planning is important for successful 
execution of a construction project, since the main 
structural systems, major construction methods, and 
most construction materials are determined in that 
stage. However, due to the lack of detail design 
information during the planning phase, accurate cost 
estimation is hard to obtain even for the professional 
estimators. It was found that the estimators with more 
estimating experience can do better in this job than 
who with less. The emerging development of modern 
artificial intelligence (AI) techniques, such as 
neuro-fuzzy systems, the aforementioned estimating 
experience/knowledge can be acquired by learning 
from historical examples, so that accurate estimation 
(compared with the detail estimation) could be 
obtained with very limited available project 
information. Unfortunately, an essential difficulty is 
facing the traditional conceptual cost estimation if the 
knowledge-based approaches are to be adopted—the 
unit prices of the cost items are variable in the 
marketplace, so that the estimation knowledge 
learned previously may not be readily applicable in 
the future projects.  

In this paper, the PIREM (Principal items ratio 
estimation method) [1] approach is integrated with a 
neuro-fuzzy system, ANFIS [2], to perform data 
mining (DM) function in the knowledge discovery 
process of conceptual cost estimation. An application 
of the proposed DM method for cost estimation of 
building construction projects in People’s Republic of 
China (PRC) is selected for demonstration of the 
proposed method in order to meet the needs caused 
by more and more construction projects invested by 
the Taiwan’s businessmen in PRC in the past decade. 

As the cost estimation system of PRC (so-called 
“fixed price system [3]”) is different from the cost 
estimation system in Taiwan (i.e., “bill of quantities”, 
BOQ system), investors from Taiwan and other 
countries are unable to obtain accurate conceptual 
cost estimates for their projects, especially for the 
first-time investors. In order to conquer the difficulty, 
knowledge discovery in databases (KDD) [4] 
techniques are employed to mine the cost estimation 
knowledge from historical cost data of previous 
construction projects. The historical cost data are 
collected from sample projects in the publications 
published by the Ministry of Construction of PRC 
[5,6]. Totally, 114 building construction projects were 
collected and analyzed. The quantities and their unit 
price information of every cost item are surveyed and 
calculated separately in PIREM. The ANFIS neuro 
fuzzy system is adopted to capture the relationships 
between the influential attributes and the construction 
cost. The relationships acquired by ANFIS are stored 
in forms of fuzzy IF-THEN rules, so that the domain 
experts can visualize and verify the cost estimation 
knowledge explicitly. With the aid of the proposed 
approach, the barrier caused by different cost 
estimation system can be overcome. The testing 
results show that the cost estimation accuracy can be 
up to 90.01%, which is considered acceptable during 
the project conceptual planning phase. 

 The paper is organized in the following manner. 
In the second section, the previously developed 
PIREM approach for conceptual cost estimation is 
reviewed first to provide background knowledge. 
Then, process for mining of historic cost estimation 
data is briefly discussed. Fourthly, the ANFIS 
neuro-fuzzy system as a technique for data mining is 
introduced. In the fifth section, application of the 
proposed approach to cost estimation of building 



projects in Mainland China is presented. Both data 
mining and system testing are presented and 
discussed. Finally, the findings of the research are 
concluded. Difficulties encountered in KDD of 
conceptual cost estimation, especially for cost 
estimation of projects in PRC, are discussed. 
Directions of future research are also suggested at the 
end of this paper. 

2. PRINCIPAL ITEMS RATIO 
ESTIMATION METHOD (PIREM) 

Among the many conceptual estimating methods, 
parametric cost estimating has been widely adopted 
in industry for the economic feasibility analysis in the 
early stage of a construction project. The parametric 
cost estimating takes important influential parameters 
as inputs, such as the floor area, cubic volume, bay 
width, etc. By statistic regression or other mapping 
schemes, the relations between the estimates and the 
influential parameters are established. The cost 
estimates of new projects are obtained by mapping 
inputs of parameter values based on pre-determined 
mathematic relation [1].  

2.1 Problems facing traditional methods 
The essential problem for all parametric cost 

estimating approaches is that the unit prices of cost 
items fluctuate as time passes. Thus, construction 
cost estimates obtained based on previous estimation 
experiences may be incorrect due to unit price 
variation in the marketplace. The key problem to this 
result is the use of “activity cost” as the measure of 
estimates during analogizing process. However, the 
“activity cost” mixes up the two elements—quantity 
and unit price—of a construction cost item. Even 
though some approaches introduced the “overall price 
index” as a parameter for adjusting construction costs 
[7], the price fluctuations for individual cost items are 
not varying proportionally and simultaneously. 
Adjusting the unit prices of all cost items with a 
“overall price index” is not realistic. The PIREM 
proposes a better way is to divide the two elements of 
the cost item and handle them separately. The 
quantities of a cost item are mainly affected by the 
factors of construction method adopted, such as the 
dimensions of structural design, the method of 
construction, the conditions of site environment, etc. 
Thus, they won’t change as long as the same facility 
is constructed by the same method under the same 
environmental conditions. On the other hand, the unit 
price of the cost item may vary from time to time. It 
is reasonable to employ the most updated unit prices 
for the cost items in order to reflect the prices of 
marketplace.

Another problem is that a construction project 
usually consists of hundreds or even thousands of 
cost items. It is very expensive and time consuming 
to obtain the quantity estimates and unit prices of all 
items in a construction project. In order to resolve 

this problem, the PIREM adopts the Pareto Optimum 
Criterion (or namely, “80/20 Principle”) to simplify 
the estimation process. 

2.2 Model of PIREM 
With the Pareto Optimum Criterion, only the top 

20% cost items is selected as “Principal Items (PI)”. 
The summation of the principal cost items gives the 
Cost of Principal Items (PIC). The ratio of PIC over 
the overall cost is defined as the Principal Item Ratio
(PIR or p). The value of p can be calculated by the 
following equation. 
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where the numerator is the summation of the costs 
of all principal items, while the denominator is the 
summation of the costs of all cost items in a 
project. The super script s upon all parameters 
stands for the sth historical example. UPi means 
unit price and Qi means quantity of the ith cost 
item, and so forth. OC stands for overall cost. The 
ratio p obtained in Eq. (1) is called Principal Item 
Ratio (PIR) as defined above. 

It is found by analyzing PIR’s obtained from 
historical cost estimation data that the PIR of a 
specific type of construction project usually keeps 
constant with very small variation [8]. Therefore, 
given the PIC, the OC of the new project can be 
recovered by the following equation. 
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where OC r is the estimate of overall cost for the 
new (rth) project. p is the average PIR calculated 

from previous projects.  PICr is the cost of 
principal items of the new (rth) project. 

In Eq. (1) and (2), the current unit prices (UP’s)
for the new project should be surveyed from the 
marketplace at the moment of estimation. While, the 
quantity, Q, and average PIR, p , have to be 

determined by parametric estimating methods based 
on the pre-determined mathematic relations. The 
mathematic relations between input parameters and 
the output estimate values are usually nonlinear. 
There are some approaches available for establishing 
such relations including nonlinear regression, 
artificial neural networks, and case-based reasoning. 
Among those, the nonlinear regression method may 
encounter severe convergence difficulty while 
dealing with more than two variables. The artificial 
neural network approach is good at nonlinear 
mapping. However, the mathematic relationships 
established are stored in a “black box” thus limits the 
value of knowledge learned. The estimation error of 
case-based reasoning method is still high [7], which 
may not be accurate enough for decision-making 



during conceptual planning stage. In the proposed 
system, a neuro-fuzzy soft computing technique, 
ANFIS [2], is adopted to achieve more accurate 
estimations and provide human understandable 
knowledge for the estimators. 

3. DATA MINING PROCESS 

Data mining was defined as the application of 
automated knowledge acquisition methods for 
generation of useful knowledge via organization and 
analysis of raw data [9]. The procedure for data 
mining implementation consists of five steps [10]: (1) 
objective determination; (2) data preparation; (3) data 
transformation; (4) data mining; and (5) result 
analysis. There are some information techniques 
available for data mining implementation such as 
symbolic learning, case-based reasoning, and 
artificial neural networks. Two key issues for data 
mining are: (1) the accuracy of knowledge 
acquisition, and (2) the format knowledge 
representation. In this paper, a neuro-fuzzy system 
named ANFIS is adopted for mining of cost 
estimation data primarily due to the excellent 
learning ability and explicit knowledge representation 
of neuro-fuzzy systems. 

Descriptions of the process for mining of 
historical cost estimation data are follows.  

(1) Objective determination—the goal of data 
mining for cost estimation is to acquire the 
underlying knowledge embedded in the 
historical cost estimation data. Two primary 
objectives are providing accurate estimate of 
construction cost with a set of given 
parameters and the insight (inference process) 
of cost estimation. 

(2) Data preparation—the “raw data” for cost 
estimation are collected from former projects 
and cleaned via a data pre-treatment process.  

(3) Data transformation—the data transformation 
consists of two tasks: quantification of 
qualitative parameters and data normalization. 
This step is performed to prepare data for 
ready to use by the data mining techniques.                                    

(4) Data mining in this paper, the data mining 
process is performed by ANFIS neuro-fuzzy 
system. A commercial software Matlab  
Fuzzy Logic Toolbox is adopted for 
mining of the historical cost estimation data. 
The raw data are divided into two sets: the 
training set and testing set. The grid partition 
scheme is used for fuzzy partition of input 
parameters. A hybrid-learning rule combining 
steepest descent scheme and least-square-error 
scheme is adopted for training of the 
neuro-fuzzy system.  

(5) Result analysis—after training, the fuzzy 
decision rules are extracted from the historical 
cost estimation data for each training set. The 
rules can be used for system testing. They can 

be evaluated by the domain experts. 

4. ANFIS NEURO-FUZZY SYSTEM  

Neuro-fuzzy system is a branch of artificial 
intelligence (AI), which combines the merits of 
artificial neural networks (ANN) and fuzzy inference 
systems (FIS). A basic structure of an FIS is 
comprised of three components: (1) a rule base, 
which stores a bunch of fuzzy if-then rules; (2) a 
database, which defines the membership functions 
used in the fuzzy rules; and (3) a reasoning 
mechanism, which performs fuzzy inference upon the 
rules and given facts to derive a reasoning output or 
conclusion. There are three major types of FIS’s 
widely adopted for management and engineering 
applications:  

(1) Mamdani FIS—a general type of FIS that 
adopts “max” and “algebraic product” for 
fuzzy T-norm and T-conorm operations. A 
typical fuzzy if-then rule for Mamdani FIS is 
shown in Eq. (1).
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where kR  means the kth fuzzy rule; k
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kB  represent fuzzy linguistic variables; 
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inputs and output of the kth fuzzy rule.  
(2) Sugeno FIS—a special type of FIS that adopts 

a crisp function in the consequence of a fuzzy 
decision rule. A typical fuzzy decision rule for 
Sugeno FIS is shown in Eq. (2).
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where kR , k
iA , kB , T

pxxxx ),...,,( 21
, and 

y  are defined similarly as in Eq. (1), while 

),...,,( 21k pxxxf  is a polynomial taking on x1,

x2, …, xp and is used to define the consequence 
of a fuzzy decision rule. 

(3) Tsukamoto FIS—also a special type of FIS 
that adopts a monotonical membership 
functions in the consequent part of a fuzzy 
decision rule. A typical fuzzy decision rule for 
Tsukamoto FIS is shown in Eq. (3).
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where kR , k
iA , kB , T

pxxxx ),...,,( 21
, and 

y  are defined similarly as in Eq. (1), while 

kC  are monotonical membership functions to 

describe the consequent part of a fuzzy 
decision rule. 
While applying to data mining, the three FIS’s 

mentioned above need to be equipped with 
“learning abilities” so that they are able to 
“mine” knowledge from raw data. Three popular 
learning schemes for constructing a neuro-fuzzy 
system are: (1) FALCON proposed by Lin and 
Lee [11], (2) ANFIS proposed by Jang [2], and 
(3) Back-propagation fuzzy system proposed by 



Wang and Mendel [12]. In this paper, the ANFIS 
is adopted for construction of a Sugeno FIS.  

5. APPLICATION TO RESIDENTIAL 
CONSTRUCTION PROJECTS IN CHINA 

In this section, the proposed method is applied to 
cost estimation of residential building construction 
projects in Mainland China. The application is 
challenging in construction cost estimation due to the 
wide range of construction locations and variety of 
construction firms.  

5.1 Fixed-price system in China 
The “fixed-price system” is an outgrowth of the 

planned economy system of socialism, which aims at 
unifying the quantities and prices of a specific 
construction cost item by the government, so that the 
national economy can be under control [3]. In 
practice, the estimators of contractors usually prepare 
a “main resources list (MRL)” of the project while 
they submit their bids. Such MRL is very similar to 
the PI in PIREM described previously in this paper. 
With MRL, the managers are able to visualize cost 
profile of the construction project.  

5.2 Why PIREM for construction cost estimation 
in China? 

PIREM has been successfully applied in the public 
construction cost estimations in Taiwan [8]. The aptly 
separation of quantity and unit price of the cost item 
has demonstrated its capability in reflecting the most 
updated currency in marketplace. The “fixed price 
system” of Mainland China also separates the 
quantity with unit price determined by the 
government—the “fixed price”, thus shows great 
similarity with the scheme of PIREM. The other 
reason for adopting PIREM is the wide range and 
great variety of China’s construction market. Since 
China is one of the largest countries in the world, it is 
difficult for a contractor to develop specific 
estimation system for every province or city. PIREM 
provides a universal conceptual cost estimation 
method for contractors who perform projects in 
different provinces or cities in China.  

5.3 Historical databases  
In order to acquire the cost estimation knowledge, 

historical data of 110 high-rise residential 
construction projects from China are collected from a 
government publication [5,6]. The location 
distribution of the 110 projects is shown in Figure 1. 
The 110 projects are selected from 25 provinces/cities, 
where the top five provinces/cities are Beijing City, 
Fujian Province, Hebei Province, Hunan Province, 
Sichuan Province, and Shaanxi Province.  
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Figure 1. Distribution of project locations 

The cost volume distribution of the110 projects is 
shown in Figure 2. In Figure 2, it shows that the 
construction costs of the historical residential projects 
are uniformly distributed. 
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Figure 2. Distribution of construction costs 

By statistic analysis, the MRL of the 110 
residential construction projects consists of 10 
elements: labor, cement, rebar, gravel, sand, brick, 
structural steel, tile, wood, and glazing, which will be 
considered for principal items (PI) of PIREM.  

5.4 Verification of ANFIS data mining  
To verify the nonlinear mapping of ANFIS, 

historical data were collected and divided into two 
sets: (1) 110 data sets collected from reference are 
used for training, and (2) the other 10 data sets 
collected from reference are used for testing. The 
training error is controlled within the error goal of 
10%. The maximum epochs for training are 
controlled within 1000. The training and testing are 
performed for all principal cost items. The testing 
errors are within 10% (9.99%). The system accuracy 
is generally satisfied, since the acceptable error for a 
conceptual estimation system usually ranges from 
15%~20% [13]. The results for the 10 testing sets are 
shown in Table 1, where the foundation types consist 
of: (1) simple foundation (value=1); (2) continuous 
foundation (value=2); (3) shaft foundation (value=3); 
(4) box foundation (value=4); (5) PC pile (value=5). 
Moreover, the structural types include: (1) brick 
(value=1); (2) RC frame (value=3); (3) shear wall 
(value=5). 



Table 1. Results for testing sets 

No. PIC* P% 
Actual
cost*

Estim. 
cost*

Acc.
%

1 290 47.70 556 607 90.88 

2 564 51.70 1057 1091 96.75 

3 292 45.30 626 645 97.08 

4 491 42.10 1015 1166 85.19 

5 324 46.30 610 700 85.37 

6 503 42.30 1018 1189 83.13 

7 232 53.60 462 433 93.65 

8 459 45.90 1114 1000 89.75 

9 488 44.70 1224 1091 89.20 

10 596 45.60 1179 1306 89.15 

Average accuracy % 90.01

* RMB/M2

5.5 Influence of price fluctuations  
In order to assess the influence of price 

fluctuations in the market, two scenarios are designed 
for sensitivity analysis: (1) all unit prices of principal 
items are increasing while the non-principal items are 
decreasing; (2) all unit prices of principal items are 
decreasing while the non-principal items are 
increasing. Each of the above scenarios is analyzed 
under three ranges of price variation, that is: (1) unit 
prices randomly varying from 0~5%; (2) unit prices 
randomly varying from 5~10%; and (3) unit prices 
randomly varying from 10~15%. The price variation 
ranges is compared with the price fluctuations 
observed from the market shown in Table 2. It’s 
found from Table 2 that the maximum price variation 
of China’s market is below 5%. Therefore, the 
sensitivity analysis should cover all possible price 
fluctuation ranges that may happen in the near future. 

Table 2. Price fluctuations of China, 1996~2001 [14] 

Year Consu.
index 

Retail
index 

Manu.
index 

Matl . 
index 

Fixed
prop.
index

1996 100.00 100.00 100.00 100.00 100.00
1997 102.81 100.79 99.68 101.30 101.69
1998 101.98 98.17 95.60 97.02 101.47
1999 100.55 95.24 93.29 93.83 101.07
2000 100.95 93.81 95.92 98.62 102.20
2001 101.65 93.07 94.68 98.40 102.59
Fluct. 1.56% 4.34% 4.40% 2.79% 1.77%

Table 3. Testing of unit price fluctuation  

Scenario 
Unit price 
variation 

Ave. 
accuracy. 

Error 
increase

0% 90.01% 0.00%
0~5% 90.98% 0.97%

Scenario I 
(1PUP ,
2NUP ) 5~10% 88.08% 1.93%

0% 90.01% 0.00%
0~5% 91.45% 1.44%

Scenario II 
(1PUP ,
2NUP ) 5~10% 90.09% 0.08%

1PUP: Unit prices of principal items 
2NUP: Unit prices of non-principal items 

The proposed system is also tested to view the 
influence of unit price fluctuation on its estimation 
accuracy. The testing results are shown in Table 3. 
Where, under the worst scenarios, the highest error is 
still below 20%, the margin of maximum allowable 
error for a conceptual estimation system [13].  

5.6 Sensitivity analysis  
One of the most valuable features for data 

mining is the graphical presentation of the minded 
patterns or knowledge. For cost estimation, user 
always wants to know the most sensitive factors 
affecting the construction cost. In this regards, 
sensitivity analysis of various influential attributes on 
overall construction cost is very useful for value 
engineering and best alternative selection. Figure 3 
and 4 show examples of sensitivity analyses, where 
the red color indicates areas that are potentially costly 
and should be avoided. Moreover, sensitivity analysis 
can also help users identify cost sensitive attributes. 
For example, the foundation type is more 
cost-sensitive than structure type and floor area in 
Figure 3; the number of stories is more cost-sensitive 
than structure type in Figure 4.  

Figure 3. Sensitivity Analysis—Foundation type vs. 
Structure type 

Figure 4. Sensitivity Analysis—No. of stories vs. 
Structure type 



5.7 Fuzzy rule base  
The knowledge mined by ANFIS is stored in the 

fuzzy rule base such as the one shown in Figure 5. 
The fuzzy rule base contains a set of fuzzy decision 
rules. Every fuzzy decision rule consists of a set of 
fuzzy linguistic terms for expressing values of every 
attribute in the precondition part; it also contains a set 
of fuzzy linguistic terms for the single output in the 
consequence part. Every fuzzy linguistic term is 
coupled with a fuzzy membership function. The 
fuzzy decision rules can be visualized and evaluated 
manually by the domain experts.  

Figure5. Fuzzy rule base 

6 CONCLUSIONS AND 
RECOMMENDATIONS 

This paper presents a data mining method for 
mining of construction cost estimation knowledge. 
The proposed method integrates a conceptual cost 
estimation method (PIREM) with a neuro-fuzzy soft 
computing data mining technology (ANFIS) to 
provide desirable features for construction cost 
estimation. While applying to the geometrically huge 
and geographically complex construction market 
such as China, the proposed method demonstrates its 
outstanding capabilities in knowledge discovery. It 
provides not only the accurate estimation results but 
also the visual knowledge representations that are 
useful and desirable for the users. A case study of 
residential building construction projects in Mainland 
China is demonstrated to test the proposed method. 
The testing results show that the proposed method 
can still achieve high estimation accuracy up to 
90.01% even for the great variety market such as 
China.  

Some future directions for research can be 
pursued: (1) application of proposed method to other 
types of projects, such as industrial projects logistic 
inventory projects, infrastructure projects, etc.; (2) 
integration of proposed method with construction 
planning and scheduling systems to expedite project 
execution; (3) development of a more intelligent data 

mining technique to improve the estimation accuracy.  
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