
Automation of an excavator based on a 3D CAD model and GPS measurement

*Tomi Makkonen, */***Kalervo Nevala, **Rauno Heikkilä
*University of Oulu, Department of Mechanical Engineering, P.O.Box 4200, FIN-90014

University of Oulu, Finland. E-mail: Tomi.Makkonen@me.oulu.fi
**University of Oulu, Research unit of Construction Technology, P.O.Box 4400, FIN_90014

University of Oulu, Finland. E-mail: Rauno.Heikkila@oulu.fi
***VTT Electronics, P.O.Box 1100, FIN-90570 Oulu, Finland. E-mail:

Kalervo.Nevala@vtt.fi

Abstract: This study examines the possibilities of controlling a six degrees of freedom excavator with the final
objective of controlling the movements of the excavator by using a CAD model of the road surface. Compared to
the traditional excavator with 4 DOF, the excavator was provided with two additional degrees of freedom by
applying the 2 DOF Rototilt, an accessory commonly in use. The advantages of automation are faster process of
working and less demands on the operator. To study this problem, an Msc.Adams with Matlab/Simulink
simulation environment was used.

Keywords: robotic excavator, path generation, dig planning, modeling, simulation, triangular terrain model,
CAD

1 INTRODUCTION

A robotic excavator is not a new idea as there are
many interesting and advanced systems, for example,
Autonomous Truck Loading from Carnegie Mellon
University [1], LUCIE from Lancaster University [2]
and Komatsu PC05-7 in ACRF [3].
Our studies have focused on 1. heavy use of a
modelling environment. 2. an assumption that a CAD
model of the target surface is available. 3. a six
degrees of freedom excavator compared to the
traditional four degrees.
It can be argued that a simulation environment is
only used for the lack of money but it does give some
advantages such as faster development time,
especially, when considering the problem of path
generation or checking a set of equations like inverse
kinematics.
A road surface CAD model has been used
successfully in machine control automation, at least
for the road grader [4,5]. The reported speed increase
was between 30 - 60%.
Based on the triangular terrain model, the theme in
this paper is to derive equations for the bucket
position and orientation so that paths L1, L2 and L3
are obtained (see Fig. 5.). We are also interested in
defining the kind of information needed about the
CAD model and in presenting it.

1.1 Excavator with 6 DOF

The main drawback of a traditional excavator with 4
DOF slightly weakens its possibilities as a robotic
excavator, namely the orientation of a bucket's
cutting edge is always parallel to y-axel of the

Figure 1. Six coordinate systems attached to an
excavator with Rototilt.

coordinate system K0 (see Fig. 1.) thus limiting the
accuracy of bucket control.
So, even if the centre point of a bucket's cutting edge
is at the desired location, the corner might travel
several tenths of a centimetre misplaced off the target
surface. Especially if the yaw angle of an excavator
is 45, displacement is as high as 35 cm for a one-
meter-wide bucket.
Rototilt [6] is shown in Figure 2. It is widely used
(and well-liked) among excavator operators because
it generates two additional degrees of freedom giving
more control for the driver to operate. Moreover, the
necessity of moving the excavator body is greatly
reduced while, for example, digging trenches with a
4 DOF excavator is only possible when the body is
located in the same line with the trench. With 6 DOF
this can also be done from the side of the line.

Figure 2. Rototilt and demonstration of possibilities of
extra two degrees of freedom.

1.2 Short introduction to a 6 DOF excavator model
and previous work

Geometry of an excavator is drawn by Adams [7], a
program designed to simulate mechanical systems.
For control and programming the Matlab/Simulink
environment is used. Both products are linked so that
the model inside Adams can be controlled from
Simulink. This speeds up development work as it is
clear that a program specifically designed for
implementation of mathematics, is superior in this
area and vice versa.
A basic model includes:
1. Analytically solved inverse kinematics for a 6
DOF excavator (Fig. 1.).
2. Positioning and orientation using 2xGPS and an
inclinometer (Fig. 3.) so that the transformation

matrix MCS
SCST between the SCS (Site Coordinate

System) and MCS (Machine Coordinate System) can
be calculated.
3. A velocity P-controller to the drive joints to a
position calculated by inverse kinematics.
Some more information can be found in the list of
references [8, 9].

Figure 3. Coordinate systems

2 PATH GENERATION FOR 3D

At the moment the most suitable file format for
excavator automation is the triangular terrain model
(see Fig. 4. and 8.). Triangles define the plane and
are defined by vertices. It is possible to generate a
xyz-file, where points defining vertices are written in
the text file. This xyz-text-file is the starting point for
our study.

Figure 4. Part of road in a triangular format. Picture
taken from MicroStation.

Figure 5. Schematic presentation of an excavator on
the triangular surface. L1, L2 and L3 are target paths

for the bucket.

2.1 Triangle compilation

As mentioned above, the xyz-format is the base of
calculations. The first step is to transform the
information to triangles as point information alone is
not enough for the purposes of path generation. The
Delaunay triangulation [10] was chosen as the
method of triangulation because it is included in the
Matlab function library.
After triangulation we have a matrix where every
row is constructed from three points in a space and a
triangle number. The triangle number is called Tri.
After joining the triangles together unit normal vector
w is calculated by using a cross product for every
triangle. Let's denote vertices as N1(x1,y1,z1),
N2(x2,y2,z2) and N3(x3,y3,z3) we get:

12

12

12

z

y

x

z

y

x

a

13

13

13

z

y

x

z

y

x

b (1)

And using a cross product and division:

ba

ba
w

 (2)

There are two possible directions for unit normal
vector w and only one is chosen so that its direction
in an SCS is up:

IF wz 0, THEN w = w,
ELSE w = -w

(3)

When considering a large model of a highway with
many triangles it is practical to bind shorting
parameters for every triangle. A simple solution is to
calculate the maximum and minimum distance
between the triangle and SCS:

2

3
2

3
2

3

2
2

2
2

2
2

2
1

2
1

2
1

zyx

zyx

zyx

mindistmin

2

3
2

3
2

3

2
2

2
2

2
2

2
1

2
1

2
1

zyx

zyx

zyx

mindistmax

(4)

When the position of a point is known in an SCS,
only the triangles that fulfil the condition - a point
can be in a triangle only if the distance of the point is
between [distmin, distmax] - can be considered.
The resulting triangle compilation matrix size is Tri x
14 and the form is then as follows:

distmaxdistmin331 wNNN
iTri,tricom (5)

2.2 Basic math for triangles, lines and points

Surprisingly simple mathematics is required when
working with the L1-3 path generation problem. Two
basic problems can be found:
At what point p does a line intersect a plane refined
by triangle vertices? This can be solved [11]:

Nw

NwD
p

)(NwD
(6)

Any of the three points can be chosen as N. If
0 Nw , the line is parallel to the plane.

If a point is on the plane defined by the triangle, does
it locate inside the area defined by vertices? Figure
6. presents a situation where point p (x,y,z) is located
inside the triangle, defined by the points N1, N2 and
N3. In a simulation environment, it is practical to give

two local origins which are located at points N1 and
N2.
By studying Figure 6. it becomes clear that point p
can be defined as the components of vectors a, b and
d (7). In addition, the parameters of those
components have to be positive. Only then is the
point located inside the triangle.

t)(t

tt

243

21

gba

gba 1

(7)

As the point is on the plane, we can discard the z-
coordinates. Solving equations (7) yields:

yxyx

yxyx

yxyx

xyxy

xyxy

xyxy

xyxy

yxyx

adda

agga
adda

dggd
abba

agga
abba

bggb

22

22

11

11

4

3

2

1

t

t

t

t

1

1

1

1

zz

yy

xx

g

2

2

2

2

zz

yy

xx

g

23

23

23

zz

yy

xx

d

12

12

12

zz

yy

xx

a

13

13

13

zz

yy

xx

b

(8)

And if all ti 0, the point is located inside the area
defined by the vertices.

Figure 6. Point p inside a triangle

2.3 Identification of triangles on the path in 3D

The next step is to find triangles which are on the
path of vectors L1, L2 and L3 (see Fig. 5.). We can
remove the z-coordinate information to simplify
calculations as the projection to the xy-plane includes
all necessary geometric information.

Let's denote the end point of L1 as L1end [x,y,z] and
we chose the direction of L1 in the following way:

MCS
SCSproj Tx [1..2,1] (9)

This is not a totally accurate way, but if the excavator
is close to the target plane and the reach is
approximated as a sphere, it gives a close enough
approximation for an initial study.
For the L1end we then get:

L1end[x,y] = OMCS[1..2] + distmaxL1xproj (10)

, where OMCS[1..2] is the MCS origin in an SCS, and
distminL1 is a system-specific parameter giving the
maximum reach of an excavator, similarly
distminL1 is defined as the minimum reach. For the
complete vector L1 we can then write a discrete
function:

L1part[x,y]n = L1end[x,y] - n/kmax
(distmaxL1-pitminL1)xproj

(11)

, where n = [1,2,3.. kmax] and kmax is the number of
samples and gives a resolution for triangle change.
Especially when n = kmax the starting point of L1 is
acquired.
The procedure is the same for L2 and L3, only
L2end[x,y] and L3end[x,y] points are calculated a bit
differently by using the width parameter klev. It
should be noticed that klev is given in 2D, and thus
in 3D the distance might vary.

tyklev-y]L1end[x,=y]L2end[x,

ty klevy]L1end[x,=y]L3end[x,

[1..2,2]

[1..2,2]
MCS

SCS

MCS
SCS

T

T
ty

(12)

The next step is to find triangles by using equations
(8) and then reduce all unnecessary data points. An
example of the resulting group is given in Figure 7.
One can see how the points are chosen at the end and
the start of the path, and between them only when the
triangle changes.
After specifying the path matrix in 2D it is
transformed to 3D by using the normal vector w,
which was created at the triangle compilation stage.
One form of equation for the plane is:

0

1

1

1

z

y

x

w

w

w

z

y

x

w

w

w

z

y

x

z

y

x

(13)

Which is solved for z:

1

1

1
1

z

y

x

w

w

w

ywxw
w

z

z

y

x

yx
z

(14)

A data set for the path point matrix in 3D is
illustrated in Figure 8. The same set is in Figure 7

Figure 7. Points defining L1, L2 and L3 on 2D
triangle surface.

Figure 8. Points defining L1, L2 and L3 on 3D
triangle surface. Data set is the same as in Figure 5.

2.4 Path and orientation of a bucket

In a previous study of a 6 DOF excavator, inverse
kinematics was created to bind the K0 and K6

coordinate systems (see Fig. 1.) and the bucket was
left out of the study. The reason for this was mainly
that the bucket shape and size could vary a lot, and
that it is still unclear what the best position and
orientation for K7 is. So, we need to create a
transformation matrix from the bucket tip to K6.
Matrix (15) and Figure 9.

1000

100

010

0001

A6
7 LK

LV
(15)

Figure 9 Coordinate systems K6 and K7

To simplify the creation of path vectors, a control
matrix is defined by using points the created in
section 3.3. Format is:

zyxTri
pathcont (16)

As one can see, the first column keeps the triangle
number, so we can use tricom matrix (5) to read
specific information from triangles. The last three
columns define the points illustrated in Fig. 8. The
path is then defined:

4..2,4..2,1

4..2,4..2,1
s

4..2,

ii

ii

ipathveci

pathcontpathcont

pathcontpathcont

pathcon

(17)

Parameters (above) can be expressed as a function of
time so that timevelocity s . In this way the
constant speed for bucket movements is achieved.
For index i, a triangle change, we get a simple
condition:

s 4..2,4..2,1 ii pathcontpathcont (18)

Orientation of a bucket is easily obtained from the
calculation above. Let us name the transformation
matrix, which defines orientation and position of a

bucket in an SCS as 7
SCST . By examining Figure 1. it

is clear that the z-axis of the K7 coordinate system
has to be in the opposite direction of the triangle
normal vector w. Thus we get:

 w3,3..1T7
SCS

(19)

Logically (see Fig. 1) we can see that the direction of
the y-axel should point away from the excavator.
More exactly its direction should be opposite to
pathvec:

i

i

pathvec

pathvec
2,3..1T7

SCS (20)

We know about the x-axel that it is on the plane
defined by the triangle (as is y-axel) and its direction
is obtained by using a cross product:

 3,3..1T2,3..1T

3,3..1T2,3..1T
1,3..1T

7
SCS

7
SCS

7
SCS

7
SCS7

SCS

 (21)

The transformation matrix 7
SCST defining the desired

bucket position and orientation in an SCS is
established.

3 CONCLUSION

It was show hot it is possible to use CAD reference
for bucket positioning. Triangular terrain model was
first compiled to xyz-file format and from there it
was derived equations to formulate target

transformation matrix 7
SCST for purposes of

excavation bucket control.
Combining this result with a transformation

matrix MCS
SCST , which in our model was created by

using 2xGPS and a inclinometer, it is possible to
form set points for bucket in 3D and in case of 6
DOF excavator also orientation is defined.
Also for further use a form of matrices defining
target points pathcont and information gathered

from triangles tricom is found to be efficient.

4 REFERENCES

[1] Stentz A., Bares J., Singh S. & Rowe P., A
Robotic Excavator for Autonomous Truck Loading.
Proceedings of the 1998 IEEE/RSJ Intl. Conference
on Intelligent Robots and Systems. Victoria, B.C.
Canada. pp. 1885-1893, 1998.

[2] Ha Q., Santos M., Nguyen Q., Rye D. & Durrant-
Whyte H., Robotic excavation in construction
automation. IEEE Robotics and Automation
Magazine, Vol. 9, No. 1, pp. 20-28, 2002.

[3] Bradley, D.A., Seward, D.W., Developing real-
time autonomous excavation – the LUCIE story,
Proceedings of the IEEE Conference on Decision and
Control, Vol. 3, pp. 3028-3033,1995.

http://www.eng.uts.edu.au/~quangha/Pdf_papers/IEEE_RAM.pdf

[4] Heikkilä, R., Jaakkola, M., The Efficiency of a
3-D Blade Control System in the Construction of
Structure Layers by Road Grader - Automated
Design-Build of Road Construction in Finland,
ISARC'2002, 9th International Symposium on
Automation and Robotics in Construction,
Washington, DC, the United States of America, pp.
475-480, 2002.

[5] Heikkilä, R. , Jaakkola, M., Intelligent Road
Construction Site - Development of Automation into
total working Process of Finnish Road Construction.,
ISARC'2003, 20th International Symposium on
Automation and Robotics in Construction,
Eindhoven, the Netherlands, pp. 265-269, 2003.

[6] Indexator, company home pages, WWW-pages,
Url: http://www.indexator.se, 17.6.2004.

[7] MSC.Software Corporation, company home
pages, WWW-pages,
Url: http://www.mscsoftware.com, 17.6.2004.

[8] Makkonen, T., Nevala, K., Simulating an
excavator equipped with a rotating bucket – the 6
DOF system, OST – 03 Symposium on machine
design, ISBN 951-42-7215-3, pp. 46-52, 2003.

[9] Makkonen, T., Desing and Simulation of the
bucket positioning system excavator using Adams
and Simulink programs, Diploma thesis, University
of Oulu, 2003. (in Finnish, confidential until
6.10.2006)

[10] George, P., Borouchaki, H., Delaunay
triangulation and meshing: application to finite
elemets, Paris, Hermes, p. 413, ISBN 2-86601-692-0,
1998.

[11] Katara, M., Computer graphics, PDF format,
www.cs.tut.fi/~tgraf/2003/luennot/T0-39.pdf,
17.6.2004. (in Finnish)

