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Abstract: Improving the scheduling of the design project can greatly reduce the total duration of the project.  
However, appropriately representing the schedule of a design project is complicated chiefly because the design 
activities often have different degrees of information dependencies between each other.  That is, design process 
involves a number of iterations across the design activities. This work develops a simulation-based model to 
incorporate the design iterations for generating the schedule of a design project. The proposed model is 
implemented using a simulation language and the benefits of the model are demonstrated by an example project. 
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1. INTRODUCTION 
 
Many scheduling models have been developed to 
manage the duration of a construction project, but 
little effort has been made to control the schedule of 
the design project. However, slightly improving the 
control of the design schedule may greatly reduce the 
total duration of the project. Glavan and Tucker 
pointed out that about one third of public and private 
A/E project missed cost and schedule target for some 
design-related problems [1]. A recent survey 
demonstrated that success of design process was the 
key to the success of project in the UK [2]. 

Current practice typically uses a bar chart 
method to represent the schedule of a design project. 
In the bar chart, each bar covers several months and 
represents a design activity. Some responsible project 
managers may further state points of expected 
percentage completions (such as, 25%, 50%, 75% 
and 100%) or control points (for example, drawing 
begun, drawings ready for engineering review, 
signing by project manager, incorporation of client’s 
comments, and ready for bid/construction) as 
milestones in each design activity. Unfortunately, 
construction projects are frequently delayed because 
design deliverables (such as drawings, specifications, 
material take-off sheets and others) are delivered late. 

Alternatively, a critical path method (CPM) 
network analysis may be used to schedule design 
activities. However, using CPM analysis for design 
projects is difficult mainly because design activities 
frequently have different degrees of information 
dependencies between each other.  Namely, the 
design process involves a number of iterations. Thus, 
a large amount of design information passes among 
activities many times until owner’s needs or 
regulatory requirements are met. Such iterative 

information dependency makes difficult to define the 
logical relationships between activities in the network 
as well as to evaluate the duration of each activity. 
Additionally, design resource utilization and 
productivity of designers are not easily incorporated 
into the schedule of a design project. 

This work develops a simulation-based model to 
incorporate the design iterations for generating the 
schedule of a design project. The benefits of the 
model will be demonstrated by applying the model to 
a practical design project. 

 
2. PAST REARCH 
 
Considering design iterations and information 
dependency, Austin et al. [3-4] described a planning 
methodology (ADePT) to help plan the building 
design process. The core part of ADePT is a 
dependency structure matrix analysis that can help to 
order the design tasks into the optimum sequence to 
minimize the number of iterations within the 
multi-disciplinary design process. Furthermore, a 
computer tool, DePlan, has been developed by 
integrating the strategic nature of ADePT with the 
operational approach of Last Planner [5]. With a 
focus on viewing design as the flow of information, 
an Internet-based framework called the 
process-parameter-interface model was developed to 
address the design management issues associated 
with improving design process scheduling and 
increasing the efficiency of collaboration [6]. 
 
3. DESIGN ITERATIONS 
 
Decisions made in the preceding activities may 
constrain the design search space in subsequent 
activities to such an extent that design may be 



 

 

sub-optimal or even infeasible. Accordingly, some 
design iteration loops may arise, possibly across a 
number of activities. Thus, iterations across activities 
should have a great impact on the ability to arrive at a 
precise duration estimate of a design project. Figure 1 
displays the example of design iterations [7]. 
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Figure 1. Example of design iterations 

The occurrence of design iterations may be due 
to the following causes: 

 Cyclic decision making process. — During 
designing, decisions often are made iteratively 
until the design deliverables meet the needs. 

 Exchange of design information. — Design 
information often requires to be exchanged 
among intra-disciplines, inter-disciplines and 
multi-disciplines.  

 Design review. — Design review always creates 

design iterations and certain activities may 
require to be revised to reflect the reviewing 
comments. 

 Design rework. — Design rework produces 
design iterations because certain activities have 
to be performed again. 

 Design change. — A design change may require 
extra design deliverables of an activity. 

 Non-conformance of clients’ requirements — 
Nonconformance of design deliverables will also 
produce design iterations. This usually happen in 
schematic design phase that the project owner 
selects rejects the proposed alternative. An 
experienced designer will carefully produce the 
minimal design deliverables for ensuring that the 
proposed alternative meets the needs. 

 
4. PROPOSED MODEL 
 
The proposed simulation-based design schedule 
model consists of four modeling phases (See Figure 
2), including representing design process (Phase I), 
developing simulation network (Phase II), identifying 
input parameters (Phase III), and selecting output 
variables and running simulation (Phase IV). 
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Figure 2. Modeling steps for developing design schedule

 
4.1 Phase I: representing design process 
 
This phase is to systematically represent the design 
process of the design work by the following steps: (1) 
identify design activities and their dependencies, (2) 
define the deliverables of activities, (3) develop 
design dependency patterns, (4) determine the 
starting and ending conditions, and (5) identify 
design iterations by using dependency structure 
matrix (DSM) technique. 

In this phase, several key points should be noted: 
 The design activities discussed herein are 

end-item oriented or deliverable oriented. That 
is, the activities are the functional primitive 
tasks in the operational level.  For example, 

the design activities are such as “preparing 
floor slab calculations” and “developing floor 
slab drawings”. Conversely, those activities 
such as “prepare and develop design concept” 
and “coordinate design concept” are high-level 
design tasks that do not have definite outputs. 
And they are not considered in this study. 

 Design dependency is the logical relationships 
between activities. A dependency indicates the 
information flow carrying with design 
deliverables. 

 In this study, the design deliverables are 
classified according to the AIA (American 
Institute of Architects) standard practice and 
uniform drawing formats.  

 Developing the patterns of design dependency 



 

 

is to facilitate establish a simulation-based 
network in a modular manner. The patterns can 
be “serial”, “parallel” or “coupled”. 

 Determining the starting and ending conditions 
is to identify the major relationships among 
design disciplines. In a non-process facility 
building design, the architectural discipline 
usually leads the design project such that he 
delivers the plan to other disciplines and 
receives deliverables from them. Also, for 
example, 15% completion of floor plan may 
initiate the start of both ceiling design and 
finishes design activities; and 25% initiates the 
start of structural design activity, and 35% 
initiates the start of mechanical design activity 
[8]. In the proposed model, the percentage or 
amount of drawing completion can easily be 
accessed for initiating the starts of certain 
designated activities or disciplines. 

 Design iterations can across the activities 
within a single discipline or multiple 
disciplines. DSM formulation is a matrix that 
can help represent activity iterations [9]. 

 
4.2 Phase II: developing simulation network 
  
This phase is to establish a simulation-based network 
and write the source codes for the network. A 
simulation language, Stroboscope [10], is adopted to 
implement the simulation-relevant algorithms of 
design scheduling described in the proposed model. 
Stroboscope often is applied to dynamically access 
the state of the simulation and the properties of the 
resources involved in construction operations.  

The modeling steps of this phase include: (1) 
develop Stroboscope network for each discipline, (2) 
generate design dependency patterns, (3) assign 
participants (e.g., such as architect, designers, or 
consultants), (4) develop network starting and ending 
conditions, (5) combine Stroboscope network of the 
individual networks, and (6) write the source codes. 

Based on the cyclic nature of simulation, the 
iterative nature of design process can be easily 
captured. Also by incorporating the productivity rates 
of the design disciplines into a simulation-based 
model, expected outcomes of design duration can be 
calculated for measuring design performance.  

In applying Stroboscope to this model, the 
COMBI nodes are used to represent design activities; 
QUEUE nodes store design resources (e.g., 
participants and drawings); and links carry the various 
types of design information.  Other simulation 
control nodes can be found in Martinez [20]. 
 
4.3 Phase III: identifying input parameters 
 
This phase is to identify the input parameters for 
running the Stroboscope model.  Some of the 
parameters are Stroboscope’s system maintained 
variables or control statements. The steps conducted 
in this phase include: (1) determine general input 

parameters, (2) develop duration calculation equations, 
(3) control amounts of information flow, (4) control 
iterated information flow, and (5) determine 
additional simulation control. 

The major input parameters are such as the 
drawing amount, conversion factor, equivalent 
drawing quantity, unit rate, hour rate, participant 
breakdown ratio, and participant contribution ratio. 
Notably, the duration of a design activity includes the 
time to develop drawings and the time to synthesize 
the deliverables generated by other iterated activities. 
Steps (2) ~ (4) are related to the programming of 
Stroboscope. 
 
4.4 Phase IV: selecting output variables and running 
simulation 
 
Before running the Stroboscope simulation model, 
this phase selects the output variables that are 
required by the model user. The steps include: (1) 
define output variables, (2) select expected output 
scenarios, (3) run the simulation, and (4) analyze the 
results. 
 
5. EXAMPLE DEMONSTRATION 
 
The example project is the design of auxiliary space 
for a factory building that is located in the 
Science-based Industrial Park, Hsin-Chu, Taiwan. 
The project involves architectural, structural, HVAC 
(mechanical) and electrical disciplines. Figure 3 
displays the floor plan of the project.  And Figure 4 
shows the section of the mechanical room of the 
project. 
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5.1 Evaluations 
 
To evaluate the duration of this design project is 
based on the modeling steps summarized in Figure 2 
and illustrated in Section 4. This section presents 
some of the major evaluations. 

First, the left of Table 1 lists the identified design 
activities of each discipline for this design project. 31 
activities involve in this project. The middle and right 
of Table 1 display the predecessors and iterated 
predecessors for each activity.   

Then five iterations (iterations A, B, C, D, and E) 
can be found. Table 2 displays the description of each 
of the iterations. And Figure 5 presents the 
partitioned matrix for illustrating the iterations 
among design activities. Notably, the proposed model 
still works even without the use of DSM technique. 
Additionally, Figure 6 further uses a bar chart to 
represent these iterations. 

 
 

Table 1. Predecessors and iterated predecessors of 
each design activity 

 
ID 

 
Activity 

 
Predecessor 

Iterated 
predecessor

A1 Architectural Design  
A2 Floor plan design  
A3 Exterior elevations design A2 A4 
A4 Wall sections design A3  
A5 Ceiling plan design A3 A30, A24 
A6 Restroom details design A4  
A7 Door and window details design A6  
A8 Cafeteria furniture design A4  
A9 Interior elevation design A6, A5, A8  
A10 Construction details design A9  
A11 Architectural design review A10, A7  
A12 Structural Design  
A13 Structural calculations A3 A22 
A14 Foundation design A13 A19 
A15 Floor framing design A14  
A16 Beam details design A15  
A17 Column details design A15  
A18 Slab details design A15  
A19 Structural design review A16, A17, A18  
A20 HVAC Design  
A21 HVAC calculations A3  
A22 AHU equipment design A21  
A23 Piping system design A22  
A24 Air duct plan design A22  
A25 AHU ductwork details design A23, A24  
A26 HVAC design review A25  
A27 Electrical Design  
A28 Electrical switchgear calculations A3  
A29 Electrical switchgear design A28  
A30 Light fixture and wiring design A29 A31, A32 
A31 Emergency light design A30  
A32 Smoke detector design A30  
A33 Emergency exhaust duct design A30  
A34 Electrical design review A31, A32, A33  
A35 Design completed A34, A26, 

A19, A11 
 

 
Table 2. Five identified iterations of the example 

project 
Iteration Description of iteration 

A Intra-disciplinary design iteration:  
Wall sections design (A4) will verify the
exterior openings size and height.  That is, A4
may produce design iterations for exterior
elevation design (A3). 

B Multi-disciplinary design iteration: 
Air duct plan design (A24) and light fixture
design (A30) will produce the design

information for ceiling plan design (A5). 
C Interdisciplinary design iteration: 

Assume that the AHU equipment design (A22)
produces design iteration for structural
calculations (A13) because the designated AHU
equipment loading exceeds the structural
loading capacity. 

D Intra-disciplinary design iteration: 
Assume that the structural design review (A19)
produces re-design work to foundation design
(A14). 

E Intra-disciplinary design iteration: 
Emergency light design (A31) and smoke
detector design (A32) will produce the
information for light fixture and wiring design
(A30). 
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Figure 5. DSM after partitioning 
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Figure 6. Representation of iterations using bar charts 

Finally, a simulation-based network of this 
design project for this example project can be 
generated based on the aforementioned modeling 
phases (See Figure 7). In Figure 7, the integrated 
network includes all the design activities (represented 
by COMBI nodes), participants (including architect, 
designer, assistant designer, structural consultant, and 
many others), and other simulation control nodes for 
each discipline. Basically, the architectural discipline 
starts the work (i.e., activity A2 – floor plan design); 
and the design work is completed (i.e., activity A35) 
when all disciplines finish their activities. Notably, 
this network helps establish a series of programming 
codes. 
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Figure 7. Simulation network of the example project

5.2 Results 
 
After simulation, the total duration of this design 

project without considering the design iterations 
equals to 277.55 hours.  And the critical path is the 
architectural and electrical disciplines. Figure 8 



 

 

presents a summary schedule for this run. When one 
time of design iteration is considered, the project 
duration increases to be 326.69 hours. A project 
design summary schedule is presented in Figure 9.  

Another exercise is to find the suitable strategies 
of allocating the number of design participants by 
using sensitivity analysis (i.e., performing by 
different scenarios). For example, four scenarios ((1, 
1, 1), (2, 2, 2), (3, 3, 3) and (4, 4, 4)) of different 
numbers of the architectural participants (architect, 
designer, assistant designer) are evaluated under the 
one time of design iteration. The result (Figure 10) 
shows that the shortest project duration is 224.27 
hours for scenarios (3, 3, 3) and (4, 4, 4). Apparently, 
scenario (3, 3, 3) will be a better choice than scenario 
(4, 4, 4) that requires higher costs. 

 

 

Figure 8. Project summary schedule (no iterations) 

 
Black: mean, Gray: Variance 

Figure 9. Project summary schedule (one iteration) 
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Figure 10. Project durations under different scenarios 

of architectural participants 

 
6. CONCLUSIONS 
 
While the bar chart and CPM are not suitable to 
model design schedule, this work innovatively 

applies the simulation technique to develop design 
schedule considering design iterations and design 
resources (such as participants and deliverables). 
Future research will further address the uncertainties 
in the model.  
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