
XSFORM: A SCHEMA-DRIVEN FORM-BASED XML INFORMATION
PROCESSOR

Shang-Hsien Hsieh and Hsien-Tang Lin

Department of Civil Engineering, National Taiwan University, Taipei, Taiwan 10617, R.O.C.
shhsieh@ce.ntu.edu.tw; nicep@caece.net

Abstract: A form-based XML information processor, named XsForm, has been developed in this work. XsForm
takes an XML schema as input and generates the corresponding Windows forms automatically to facilitate
gathering, editing, sharing, and management of XML information. The information processed in XsForm is then
saved into a well-formed and valid XML file for further e-business applications. This paper discusses the
development of XsForm and its application to promote e-business in the construction industry.

Keywords: XML, Schema, UIML, Form-based information processing, e-business.

1 INTRODUCTION

To promote information sharing and exchange on
Internet among collaborative parties in the e-business
process, many industries, including the construction
industry, have made considerable efforts on
information standardization using the XML
(eXtensible Markup Language) technologies [1].
The XML Schema [2] technology, in particular, has
been extensively employed to standardize shared
vocabularies as well as the structure, content and
semantics of commonly used documents for a
particular industry or area of application. For
example, ebXML [3] has been proposed to enable
enterprises of any size, in any location, to conduct
business using the Internet; aecXML [4] is being
developed to represent information in the
Architecture, Engineering, and Construction (AEC)
industry.

In addition to the information standards (in terms of
standard schemas), an information processing tool is
needed for people to gather, digitalize, edit, and save
the data for a given XML schema. The most common
approach used by this kind of tools to ease the data
processing tasks is the use of a form-based Graphical
User Interface (GUI). Although the GUI and its
associated functions of this kind of tools are similar,
people often spend repetitive efforts on developing
new tools or modifying/extending old tools whenever
they need to deal with XML documents (files) of
different schemas.

To help building the XML information processing
tools, several related research and commercial efforts
have been made. For example, XQForms [5] is a
Web-based GUI builder to generate a query form and
reports for XML data. GuiGen [6] provides a
comprehensive set of tools for creating form-based
GUI applications on Windows. Microsoft InfoPath

[7] is a commercial product that provides familiar
Microsoft Office System environment for the users to
create forms solutions, using existing customer-
defined schemas, for gathering and editing XML
information in the WYSIWYG (What You See Is
What You Get) way. In addition, a W3C specification
called XForms [8] has been proposed that combines
XML and forms to offer a better alternative to
HTML-based forms. Several XForms engines have
been developed to support the applications of
XForms.

Although the aforementioned efforts have provided
useful tools to ease the task of building form-based
XML information processing applications, fair
amount of repetitive development efforts on form-
based GUI is still not avoidable when the user needs
to deal with XML documents of different schemas.
To address this problem, this research has developed
a form-based XML information processing
application, called XsForm, that is driven by the user-
input XML schema to automatically generate
appropriate Windows forms and associated functions.
This paper discusses the development of XsForm and
its application to promote e-business in the
construction industry.

2. SYSTEM ANALYSIS AND DESIGN

The major requirements for development of XsForm
are the following:

 The system should build an appropriate form-
based GUI automatically based on the user-input
XML schema to facilitate the gathering, editing,
and management of XML information associated
with the schema. In addition, the system should
allow input of a new schema at any time and
rebuild its form-based GUI accordingly and
automatically.

 The system should provide some flexibility for
the user to adjust the appearance of GUI.

 The system should provide functions for saving
the information into an XML file that is well-
formed and valid with respect to the user-input
XML schema as well as for searching and
querying XML information in the XML files
managed by the system.

According to the requirements discussed above, the
architecture of XsForm is designed as shown in Fig. 1.
The arrows in Fig. 1 show the data flow between the
user, the XsForm functional components (in the
business logic tier and UI tier), and the XsForm
functional components (in the data tier). XsForm
takes an XML schema as input and uses the
Schema2UIML component to parse and transform the
XML schema into the corresponding UIML file.
UIML (User Interface Markup language) [9], an
XML language for defining user interfaces, is
employed in this work to describe and record detailed
information about the required GUI. The recorded
information is then used by the UIML2GUI
component to create Windows forms and associated
functions. The above process from the input of XML
schema to the creation of corresponding Windows
forms is performed automatically by XsForm.

The GUI Arrangement component in Fig. 1 provides
some options the user to customize the automatically
generated form-based GUI. The preferences specified
by the user for the options are stored in the Configure
file, which is used by the Schema2UIML component
to create the UIML file for customized GUI
appearance. In addition, the Search GUI component
supports full-text search for all XML files in the user-
specified file directory and its sub-directories. It also
provides customizable advanced search functions for
the user to query XML information based on selected
tag names in the user-input XML schema.

XsForm can also take a valid XML file as input. In
this case, the system finds and loads the
corresponding XML schema automatically. The
automatically generated Windows forms are then
filled with the data of the XML file. XsForm
produces XML files as output. All of the XML files
produced are not only well-formed but also valid with
respect to the user-input schema.

3. SYSTEM IMPLEMENTATION

This work uses the Microsoft VisualBasic.NET
with .NET Framework to implement XsForm. In this
section, discussions are focused on the
implementation of the two most important
components in XsForm: Schema2UIML and
UIML2Schema.

3.1 Schema2UIML

Schema2UIML is mainly a parser that transforms an
XML Schema into a corresponding UIML file. The
XML library, called System.xml, provided by the
Microsoft .NET Framework is used to implement
Schema2UIML.

Schema2UIML should be able to deal with most of
the XML Schema syntax (including the nested
structure), and map different types of elements in the
schema into appropriate corresponding Windows
form widgets. Because of the structure of most XML
Schemas has no more than three layers (the root
element not included) as illustrated in Fig. 2, the
following rules can be used to automate the mapping
between the XML Schema and Windows form
widgets (see also Table 1 and Fig. 2):
a. The root node in the XML schema usually has the

name or title of the schema. This research converts
the root node into a base Windows form and takes
the value of root element as the title of the window.

b. The child nodes of the root element usually
represent classification groups, each of which has
some sub-elements with similar properties.
Therefore, these similar elements are grouped and
presented together in the same window by Tab
Control or Tab Pages.

c. The elements in the second layer of the schema
structure tree contain detailed information of a
classified group. These elements have various
kinds of data types, such as string, integer, Boolean,
and date. They also can be transformed into proper
Windows form controls, such as textbox, label,
combo-box, and month calendar (see Fig. 3).

d. If the third layer exists, those elements may
contain more detailed information than those of the
elements in the second layer. The mapping rules
are the same as those in the second layer. If there
are more than one element belonging to the same
parent-element (for example, a person may have
more than one phone number), the Group-Box
widget is used to enclose those elements.

An example transformation by Schema2UIML is
shown in Fig. 4. Figure 4(a) shows the fragment of
an example XML Schema. The transformed UIML
contents are shown in Fig. 4(b).

3.2 UIML2GUI

The UIML file produced by Schema2UIML has
already recorded the structure of user interface and
information about what components should be used
to represent the elements of different types in the
schema. It is then the responsibility of UIML2GUI to
construct the actual Windows form widgets based on
the description in the UIML.

UIML2GUI is implemented as an MDI (Multiple
Document Interface) container to support review and
editing of multiple XML files in the same window as
well as to facilitate file management and comparison.

Figure 5 shows an example user interface generated
by UIML2GUI. In this example, there are 19 pages of
TabCobtrols in total on the top of the Windows form.
The Windows form controls employed on the
selected tab page include the Label, TextBox, and
ComboBox, etc. In addition, a grid-style interface is
automatically added by the system to assemble data
grids at the bottom of each tab page with an “update”
button to facilitate the management of data.

4. SYSTEM APPLICATION

An example is provided here to demonstrate how
XsForm can be used to promote e-business in the
construction industry.

Assume that a set of paper-based forms required in
the construction process needs to be converted into a
set of electronic forms in order to perform e-business
tasks. Also, there is a need for a tool to collect and
digitalize data for the set of forms and store the data
in the desired XML format. As shown in Fig. 6, the
application of XsForm to help the situation in an
effective and efficient way is described in the
following steps:
1. Define an XML schema to describe the

structures, contents, and semantics of the set of
forms. Although this step requires some fair
amount of efforts, the resulted XML schema is
the key document for sharing and exchange of
the information in the set of forms with
collaborative parties in the e-business process.

2. Execute XsForm and read the XML schema into
XsForm.

3. XsForm automatically and quickly generates
appropriate Windows forms for the user to
digitalize and edit data in the forms. It also
allows the user to save the data in the XML files
that is well-formed and valid with respect to the
given XML schema.

4. The XML files and the XML schema can then be
used in the e-business process for information
sharing and exchange.

It can be seen that XsForm significantly eases the
task of collecting and editing electronic information
that is usually the first step toward information
sharing and exchange in the e-business.

5. CONCLUSIONS

A schema-driven form-based XML information
processor, called XsForm, has been developed in this
work to facilitate gathering, editing, sharing, and
management of XML information. XsForm generates
Windows forms with associated functions
automatically according the user-input XML schema.
It helps to save repetitive efforts on development of
similar but independent form-based applications,
each for processing information in XML documents
associated with a particular schema. XsForm has
also been shown to be an effective and efficient tool
to ease the task of collecting and editing electronic
information and to promote information sharing and
exchange in the construction industry.

REFERENCES

[1] Ray, E. T., Learning XML, Second Edition,

O'Reilly & Associates, 2003.

[2] Vlist, E. V. D., XML Schema, O'Reilly &

Associates, 2002.

[3] Gibb, B., and Damodaran, S., ebXML: Concepts

and Application, Wiley, 2002.

[4] Segarra, S., “aecXML Domain Summary,”

aecXML Technical Committee, Industry
Alliance for Interoperability (http://www.iai-
na.org/aecxml/), 2001.

[5] Petropoulos, M., Papakonstantinou, Y., and

Vassalos, V., “Building XML Query Forms and
Reports with XQForms,” Computer Networks,
Vol. 39, pp. 541–558, 2002.

[6] Reinefeld, A., Stüben, H., Schintke, F., and Din,

G., “GuiGen: A Toolset for Creating
Customized Interfaces for Grid User
Communities,” Future Generation Computer
Systems, Vol. 18, pp. 1075–1084, 2002.

[7] Hoffman, M., “Architecture of Microsoft Office

InfoPath 2003,” Microsoft Corporation,
http://msdn.microsoft.com/library/en-us/
odc_ip2003_ta/html/odc_inArch.asp, 2003.

[8] Dubinko, M., XForms Essentials, O'Reilly &

Associates, 2003.

[9] Abrams, M. and Helms, J. (Editors), “UIML 3.0

Language Specification,” Harmonia Inc., USA,
2002.

Table 1 The mapping rules employed by Schema2UIML

XML Schema UIML
Root node Windows Form
First layer TabPages

【String】、【Integer】in the s
econd and third layers

Label＋TextBox

【Boolean】 ComboBox
【Date】 Month Calendar

Third layer element Group Box

Figure 1 XsForm’s Architecture.

Figure 2 Transformation from XML Schema to UIML.

Figure 3 ComboBox and MonthCalendar GUI

(a) fragment of an example schema (b) the corresponding UIML

Figure 4 a Schema2UIML example.

Figure 5 An example user interface generated by UIML2GUI

Figure 6 Application of XsForm

