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ABSTRACT: The paper presents the formulation of general approach to construction of 
structural models for elastic manipulators, which can be presented in the form of collection of 
connected in series bodies experiencing elastic deformation, and suggests the methods of 
changing over to such structure.  The paper describes in detail the method of constructing 
mathematical models for manipulators with elastic couplings, which is based on the principle of 
finite partitions and differs by introducing fictitious degrees of freedom in the points critical to 
deformations. It also considers an example of constructing model for a building-mounting robot 
on the basis of the suggested method. 
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1. INTRODUCTION 

One of the directions of civil engineering 
intensification, improvement of builders’ 
working conditions is designing and 
introduction of robots for civil engineering 
work and also development on their basis 
of robotic systems. A specific feature of 
building robots is considerable dimensions 
of manipulators’ links, action of 
considerable forces and moments, causing 
elastic deformations of links. As a result, 
building robots control should be carried 
out with due account of elastic 
deformations of a manipulating 
mechanism. Therefore, the given paper 
considers the problems of constructing 
mathematical models for building robots 
taking into account elastic deformations in 
a manipulating system, which appear under 
the influence of dynamic, and wind loads. 

 
2. GENERAL CONCEPT OF 

CONSTRUCTING MODELS FOR  
ELASTIC MANIPULATORS 

 
Let us formulate general concept of 
constructing elastic manipulators structure 
for building robots. According to the 
principle of finite partitions such 
manipulators can be regarded as a 
collection of rigid bodies with elastic 
coupling in series. In terms of the above 
mentioned it is suggested to consider 

elastic manipulator models while 
constructing them in the form of the 
structure, which in addition to actual 
degrees of freedom contains fictitious ones 
imitating elastic deformations of links 
(fig.1). 
 
The change-over to this structure is 
performed on the basis of the manipulating 
system analysis so as to define points for 

deformed links which are most critical to 
deformations (PCD). In the capacity of 
such points those are chosen where the 
ratio of ultimate stress during manipulator 
operation to unit strain of the structure 
element reaches maximal value. 
The structure element incorporating PCD 
is divided in this point into two bodies 
connected by a fictitious hinge (fig.1). 
When constructing mathematical model 
the hinge is replaced by three mutually 
perpendicular rotational degree of freedom 
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where the center of rotation coincides with 
PCD.  
Although, depending on the kind of links 
deformation the number of degrees of 
freedom of a fictitious hinge can be 
reduced to one. Introduction of fictitious 
degrees of freedom makes it possible to 
take accounts of shifts stipulated by 
availability of elastic deformations. When 
constructing a dynamic model for the 
manipulator of such structure we introduce 
an equation for generalized forces of 
fictitious links so as to take into account 
elastic forces. Parameters of their 
equations are identified from the condition 
of the best correspondence of a 
mathematical model to a real manipulator. 
If we fail to obtain the required accuracy of 
the model parameters, then we try to find 
one more PCD with subsequent 
introduction into the model fictitious 
degrees of freedom. 
 
3. MATHEMATICAL MODELS FOR 

BUILDING ROBOTS 
 

For mathematical description of the 
suggested manipulator structure we use a 
matrix method. In accordance with matrix 
of the robot coordinate system 
transformation ( ) ( )cbccc ATT qq 0=  
Cartesian coordinates of the manipulator 
end-effector are equal to : 

  ( ) ( ) ( )( ){ }
jjT ∆xqdxqfqx == ,      (1)    

where ∆x  is tool or gripper coordinates in 
the system of coordinates of the 
manipulator outlet link. The end-effector 
orientation can be determined by 
comparing submatrix elements of the 
rotation matrix )(qcT  and the matrix of 
Euler angles rotation, as a result we obtain: 

 

( ) ( )( )
( )

( ) ( )( )⎟⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜

⎝

⎛

−

−

=ϕ
3313

23

2221

2arctg

2arctg

,,

,

,,

T,T
Tarcsin

T,T
 

where arctg2(⋅) is the function reverse to 
tangent. 
For convenience of the manipulator models 
analysis we divide the generalized 
coordinates into controlled 

( )T21 ..., mqqq=′q  and generalized 
coordinates describing deformation of the 
manipulator elements, 

( )T121 ..., −=′′ mqqqq at the same time 
qqq ′′∪′= . When solving reverse task 

about position and speed relative to 
controlled coordinates q′  we consider that 
fictitious generalized coordinates q ′′  and 
their speeds q&′′  are known (measured or 
calculated for the model). Analytical 
solution of the non-linear trigonometric 
equation (1) for the variables q′  is difficult 
because of availability of non-linearities. 
For building robots control it is convenient 
to perform solution of inverse kinematic 
problem in terms of iterative 
approximation and algorithm for numerical 
solution of a non-linear trigonometric 
equation. Therefore, having transformed 
equations (1) and using expansion into a 
Maklaren series for 1q′ , 2q′ ... nq′  in the 

points )(
11

iqq ′=′ , )(
2

iq′ ... )(i
nn qq ′=′  we 

obtain: 
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where 1, 2...i n=  is a number of iterative 
approximation. 
Going over between iterations is performed 
by the formula  

( ) ( ) ( )1
1 1 1

k k kq q q+′ ′ ′= + ∆  
The iterations begin from the values of 

( )0
i iq q′ ′= , where ( )0

iq′  is the current 
position and they continue until the 
condition of: ( )k

i i iq q ε′ ′− < is fulfilled, 
where iε  is accuracy of positioning. 
Solution of direct kinematic problem for 
speed and acceleration will be obtained by 
differentiating equation (1): 
     ( ) q∆xqx && ⋅= ,G ,    
     ( ) ( ) q∆xqqq∆xqx &&&&&&& ⋅+⋅= ,,G,G , 
where ( )∆xq,G  is a Jacobean matrix [3∗n] 
equal to 
   ( ) ( ) ( ){ } i,j

jn
niU,G ∆xq∆xq ⋅= ,   
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Having performed partition of the 
generalized coordinates into controlled and 
uncontrolled ones we obtain: 

( ) ( )q∆xqq∆xqx ′′′′+′′= &&& ,G,G ,  

( ) ( ) ( )q∆xqqq∆xqq∆xqx &&&&&&&& ,,G,G,G +′′′′+′′= . 
 
The generalized speeds and accelerations 
of the controlled coordinates are calculated 
from expressions: 

  ( ) ( )( )q∆xqx∆xqq ′′⋅′′−′=′ − &&& ,G,G 1 , 
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The robot dynamics with due account of 
forces arising in elastic elements will be 
described by the dependency: 
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where M is the vector [n∗1] of generalized 
forces arising in the manipulator joints;  
D(q)  is the dynamics matrix [n∗n] 
elements of which are equal;  ) ,( qqb & is the 
vector [n∗1] of Carioles, centrifugal and 
gravitational forces; )k(

sF  is the vector of 
forces [3∗1] arising in k-th point of an end-
effector interaction with surface; )k(∆x  is 
the shift vector [3∗1] of the point of 
application of k-th  external force; Mw is 
the vector [n∗1] of generalized forces 
arising in elastic elements of the 
manipulator links. 
Using the operator of the robot generalized 
coordinates q division into the controlled 
ones q′ and the introduced ones for 
imitating elastic deformation q ′′  we 
transform equation (10) to the form: 
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The obtained model  of elastically 
deforming manipulating system of a robot 
in the form of matrix is convenient for 
constructing a building robot model and 
for constructing its control algorithms. 
 

4. MODEL OF A BUILDING-
MOUNTING ROBOT 

 
Using the described methods for 
manipulating systems modeling we 
construct kinematic and dynamic models 
of the mounting robot manipulator. Having 
analysed the suggested design of the 
manipulator we define the number of 
degrees of freedom including fictitious 
ones (fig.2). The characteristic feature of 
the manipulator is the possibility of 
appearing elastic deformations of the last 
link as the most subject to deformations 
because of great ratio of length to section 
area. In accordance with the presented 
methods we define PCD on this link and 
introduce into it a hinge with two mutually 
perpendicular rotating couples rotating 
axes of which are perpendicular to the 

longitudinal axis. 
According to fig.2 we put down the 
transition probability matrix from the 
absolute system of coordinates connected 

n,i 1= 31,j = . 
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with place of the robot installation to the 
gripper system of coordinates: 
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Then the direct task of kinematics with 
respect to the point of the gripper 
attachment will be described by the system 
of equations in the form of 
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In order to take into account deformations 
of the last link we introduce additional 
systems of coordinates (fig.3) in the point 
of critical deformation located in a5 
distance relative to the center of the 2-nd 
degree of freedom.  For convenience of the 
generalized coordinates count we assume  

22 2 rr q/ +π=θ ,  44 90 rr q+=θ , 04 =rq , 
05 =rq , 5д3д3ж r,r,r, aqq += .   

In terms of the suggested scheme the direct 
task of kinematics for the manipulator with 
deformed link can be described by the 
equation  
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where 331 rr dq +=ρ , 312 brr xd +=ρ , 
( )brrq qC ϕ+= 1cos , ( )brrq qS ϕ+= 1sin , 
( )42sinS rrqq qq −= , ( ) ++=λ 233 cos rrr qdq  

( ) 15425 rrrrr aqcosqqcosa +−+ . 
Let us introduce vector division of the 
robot generalized coordinates qr  into the 
controlled ones ( )T321 rrrr q,q,qq =′  and 

the fictitious ones ( )T54 rrr q,qq =′′ .  
On the basis of the suggested kinematic 
model we build a dynamic model for the 
robot. The manipulator dynamics equation 

for the k-th arm of the robot will be written 
in the following form  

( ) ( ) srrrrrrrrr ,GDD FqdxbqqM T′+′+′′+′′=′ &&
(

&& , 

( ) ( ) rrrrrrrrrr ,GDD FqdxbqqM TT ′′+′′+′′′′+′=′′ &&&&
(

. 

where rdx  is the shift of the robot 
attachment point with the installed element 
in the system of coordinates of the last 
link. 
The generalized moment of the controlled 
degrees of freedom rM′  is created by 
electromagnet forces of the robot drives 
and the generalized forces in the 
fictitiously introduced degrees of freedom 
are equal to 

rrrrr qqM ′′β−′′α−=′′ &  
where αr, βr are diagonal matrices of 
toughness and dissipation of the robot last 
arm  relative to the point critical to 
deformation.  

 
5. CONCLUSION 

 
The described methods of mathematical 
models construction for building robots 
makes it possible to eliminate difficulties 
connected with elastic deformations in a 
mechanical system and also with the 
availability of branching and closed 
structures. Application of fictitious degrees 
of freedom for the elastic forces imitation 
allows to simplify mathematical models of 
building robots to a great extent. The 
model equations being obtained during 
calculations can be used for developing 
control algorithms of building robots. The 
truth of the assumptions adopted during the 
development of mathematical models was 
verified by physical modeling and 
computer simulation. 
 

 
 
 


