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Abstract— A wide family of parallel manipulators (PMs) is the

one that groups all the PMs with three legs where the legs become
kinematic chains constituted of a passive spherical pair (S) in
series with either a passive prismatic pair (P) or a passive
revolute pair (R) when the actuators are locked. The topologies of
the structures generated by these manipulators, when the
actuators are locked, are ten. One out of these topologies is the
SP-PS-RS topology. This paper presents an algorithm that
determines all the assembly modes of the structures with topology
SP-PS-RS in analytical form. The presented algorithm can be
applied without changes to solve, in analytical form, the forward
position analysis of any parallel manipulator (SP-PS-RS
architecture) which generates a SP-PS-RS structure when the
actuators are locked. In particular, the closure equations of a
generic SP-PS-RS structure are written. The eliminant of this
system of equations is determined and the solution procedure is
presented. Finally, the proposed procedure is applied to a real
case. This work demonstrates that the solutions of the forward
position analysis of any parallel manipulator which generates a
SP-PS-RS structure when the actuators are locked are at most
twelve.

Index Terms —  kinematics,  position  analysis,  parallel
mechanisms,   parallel  structure.

I. INTRODUCTION

ARALLEL MANIPULATORs (PMs) are mechanisms
with only closed kinematic chains (loops). As a

consequence, in PMs, the end effector is connected to the
frame through a number of kinematic chains (legs) and the
number of kinematic pairs is much greater than the number of
degrees of freedom (dof) of the manipulator which implies the
presence of many non-actuated joints (passive joints). The
contemporary action of the legs on the end effector allows high
stiffness and positioning precision to be reached by PMs in
nearly all their workspace. These features made them suitable
for various applications: testing machines [1], simulators [2],
precision cranes [3-7], etc..

Parallel manipulators with three legs constitute a wide
family of manipulators. For instance, the majority of three-dof
PMs proposed in the literature belong to this family [8-24].
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When the active joints are locked, three-legged PMs yield
closed structures consisting of two rigid bodies (base and
platform) connected through three legs with only passive
joints. The end effector and the frame become the platform
and the base of the structure respectively. If the three-legged
PM is not overconstrained [25], the closed structure is an
isostatic structure that may have either three legs with
connectivity four or one leg with connectivity three, another
leg with connectivity four and the remaining leg with
connectivity five (leg’s connectivity is the sum of the dof of all
the joints belonging to the leg reduced to a serial kinematic
chain).

An one-to-one correspondence exists between the assembly
modes without link permutation of a closed structure and the
solutions of the forward position analysis (FPA) of the PM
generating that structure, since the FPA solutions are the end-
effector poses (positions and orientations) the end effector can
assume when the active joints are locked. One effective way to
find algorithms that solve the FPA of wide sets of PMs is the
search of algorithms that determine the assembly modes of
closed structures with a given topology, because the PMs
differing only for the type and/or the location of the active
joints generate closed structures with the same topology. The
availability of algorithms that solve the FPA allows efficient
control technique to be implemented.

In general, the analytic form solution of the FPA of a PM is
a difficult problem that involves the solution of non-linear
equation systems. In the literature, much attention has been
paid to the FPA of the Stewart platforms (see [26] for
references) and their general case has been just recently solved
[27-30].

Stewart platforms are six-dof PMs that, when the active
joints are locked, become closed structures with six legs of
type SS (S stands for spherical pair) (Fig. 1). Different types of
such closed structures have coincident spherical-pairs’ centers
either in the base or in the platform according to the type of
Stewart platform that generates them. Combining SS legs,
either legs of type S (Fig. 2) or legs of type RS (Fig. 3) (R
stands for revolute pairs) may be modeled. Therefore,
algorithms that solve the FPA of Stewart platforms are
applicable to the solution of the FPA of PMs, that, when the
active joints are locked, generate closed structures with legs of
type S or RS. Three-legged closed structures with RS (or SR)
legs are the 3RS and the SR-2RS that have been solved in [31]
and [32] respectively.
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Fig. 1: Closed structure with 6SS topology (S stands for spherical pair)

Unfortunately, when a passive prismatic pair is present in
one or more-than-one legs of a PM, the algorithms that solve
the FPA of the Stewart platforms are no longer applicable.

This work closes a research activity devoted to develop
efficient algorithms for the analytical solution of the FPA of
three-legged PMs which, when the active joints are locked,
become closed structures with three connectivity-four legs
constituted by a spherical pair, S, in series with either a
prismatic pair, P, or a revolute pair, R (i.e. legs of the
following types: PS, RS, SP and SR). The topologies of the
structures generated by these manipulators can be obtained by
listing all the possible combinations of three legs with one out
of the four topologies PS, RS, SR and SP and deleting from
the list all the structures that become an already listed structure
when the leg order is permuted or platform and base are
interchanged. So doing, the following ten structures with
different topology are determined: 3PS, 3RS, PS-2RS, RS-
2PS, SP-2PS, SR-2RS, SR-2PS, SP-2RS, SR-PS-RS and SP-
PS-RS.

Algorithms which analytically determine the assembly
modes of the first nine structures have been already presented
in [33] (3PS), [31] (3RS), [34] (PS-2RS and RS-2PS), [35]
(SP-2PS), [32] (SR-2RS), [36] (SR-2PS), [37] (SP-2RS) and
[38] (SR-PS-RS).

Only the SP-PS-RS structure (Fig. 4) has not been studied
yet.

This paper presents an algorithm that determines in
analytical form all the assembly modes of the structures with
topology SP-PS-RS. The presented algorithm can be applied
without changes for solving in analytical form the FPA of all
the PMs that become SP-PS-RS structures when the active
joints are locked.

In particular, the system of the closure equations for a
generic SP-PS-RS structure will be written. The eliminant of
such a system will be determined and the solution procedure
will  be  presented.  Finally,  the  proposed  procedure will be

Fig. 2: Three legs of SS type combined to give one leg of S type (i.e. a
spherical pair joining platform and base)

Fig. 3: Two legs of SS type combined to give one leg of RS type

applied to a real case.
This work demonstrates that the solution of the FPA of any

PM that become a SP-PS-RS structure when the active joints
are locked are at most twelve.

Fig. 4: Structure with SP-PS-RS topology
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II. NOTATIONS AND CLOSURE EQUATIONS

Figure 5 shows the notations that will be used. With
reference to Fig. 5, A is the center of the spherical pair of the
base. m is a unit vector parallel to the sliding direction of the
prismatic pair of the platform. A0 is a given point of the
platform lying on the line through A and parallel to m. a is the
signed distance from A0 to A, it is positive when the vector
(A−A0) has the same direction as m and it is the joint variable
of the prismatic pair of the platform. B is the center of
spherical pair that joins the RS leg to the platform. B0 is the
foot of the perpendicular through B to the revolute pair axis,
whose unit vector is u. u and v are two mutually orthogonal
unit vectors embedded in the base. b is the length of the
segment B0B. ϕ is the joint variable of the revolute pair [ϕ is
equal to zero when the vector (B−B0) is parallel to v and has
the same direction as v; it measures the angle,
counterclockwise with respect to u, from v to (B−B0)]. C is the
center of the spherical pair that joins the PS leg to the
platform. s is the unit vector of the sliding direction of the
prismatic pair of the base. C0 is a given point of the base lying
on the line through C and parallel to s. q is the signed distance
from C0 to C, it is positive when the vector (C−C0) has the
same direction as s and it is the joint variable of the prismatic
pair of the base. Sb and Sp are two Cartesian reference systems
embedded in the base and in the platform respectively.
Hereafter, the vectors with a superscript b (p) on the left are
projected on Sb (Sp) and, if they are position vectors, they are
defined and projected on Sb (Sp). Finally, d will be the length
of the segment BC.

With these notations, the closure equations of a SP-PS-RS
structure can be written in the following way:

(bB − bC) ⋅ (bB − bC) = d2 (1a)
(bB − bA) ⋅ (bB − bA) = (pB − pA) ⋅ (pB − pA) (1b)
(bC − bA) ⋅ (bC − bA) = (pC − pA) ⋅ (pC − pA) (1c)

Figure 5: Notations

where

pA = pA0 + a pm (2a)
bB = bB0 + b (bv cosϕ + bu × bv sinϕ) (2b)
bC = bC0 + q bs (2c)

The introduction of (2) into (1) transforms system (1) as
follows

e1 cosϕ + f1 sinϕ = g1 (3a)
e2 cosϕ + f2 sinϕ = j2 (3b)
a2 = g2 − j1 a (3c)

where

e1 = e01 + q e11 (4a)
e01 = 2 b (bB0 − bC0) ⋅ bv (4b)
e11 = − 2 b bv ⋅ bs (4c)
f1 = f01 + q f11 (4d)
f01 = 2 b (bB0 − bC0) ⋅ (bu × bv) (4e)
f11 = − 2 b (bu × bv) ⋅ bs (4f)
g1 = − q2 + g11 q + g01 (4g)
g01 = d2 − b2 − (bB0 − bC0) ⋅ (bB0 − bC0) (4h)
g11 = 2 (bB0 − bC0) ⋅ bs (4i)
e2 = 2 b (bB0 − bA) ⋅ bv (4j)
f2 = 2 b (bB0 − bA) ⋅ (bu × bv) (4k)
j2 = a2 + j12 a + j02 (4l)
j02 = (pB − pA0) ⋅ (pB − pA0) − (bB0 − bA) ⋅ (bB0 − bA) − b2 (4m)
j12 = − 2 (pB − pA0) ⋅ pm (4n)
j1 = − 2 (pC − pA0) ⋅ pm (4o)
g2 = q2 + g12 q + g02 (4p)
g02 = (bC0 − bA) ⋅ (bC0 − bA) − (pC − pA0) ⋅ (pC − pA0) (4q)
g12 = 2 (bC0 − bA) ⋅ bs (4r)

Equations (3) form a system of three non-linear equations in
three unknowns: ϕ, a and q.

An one-to-one correspondence exists between the triplets of
(ϕ, a, q) values that satisfy system (3) and the assembly modes
of the SP-PS-RS structure.

In the next section, a univariate polynomial equation in q
will be obtained by the successive elimination of ϕ and a from
Eqs. (3), then an analytic solution procedure for system (3)
will be proposed.

III. ANALYTIC FORM SOLUTION OF THE CLOSURE EQUATIONS

Equation (3a) and (3b) are linear in cosϕ and sinϕ and give
the explicit expressions
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The introduction of expressions (5) into the trigonometric
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identity cos2ϕ + sin2ϕ = 1 yields

(g1f2 − f1j2)2 + (e1j2 − g1e2)2 = (e1f2 − f1e2)2 (6)

Equation (6) contains only the two unknowns a and q. The
couples of (a, q) values that solve Eq. (6) are also solutions of
Eqs. (3a) and (3b) where cosϕ and sinϕ are computed through
expressions (5).

By expanding the expressions appearing in (6) and taking
into account (4), Eq. (6) becomes

p4 (a2)2 + p3 (a2) a + p2 (a2) + p1 a + p0 = 0 (7)

where

p4 = f1
2 + e1

2; p3 = 2 j12 p4 (8a)
p2 = (j12

2 + 2 j02) p4 − 2 g1 (e1e2 + f1f2) (8b)
p1 = 2 j12 j02 p4 − 2 g1 j12 (e1e2 + f1f2) (8c)
p0 = j02

2 p4 − 2 g1 j02 (e1e2 + f1f2) + g1
2 (f2

2 + e2
2)

− (e1f2 − f1e2)2. (8d)

Equations (7) and (3c) are two polynomial equations in a
whose coefficients are univariate polynomials in q. Such
equations constitute a system of two equations in the two
unknowns a and q whose solutions coincide with the solutions
of system (3) where cosϕ and sinϕ are computed through
expressions (5).

By substituting the right-hand side of Eq. (3c) for a2 into Eq.
(7), expanding the resulting equation and, finally, substituting
again the right-hand side of Eq. (3c) for a2 into the resulting
equation, Eq. (7) becomes

n1 a + n0 = 0, (9)

where

n1 = − (g2 + j1
2)(j1 p4 − p3) − j1 (g2 p4 + p2) + p1, (10a)

n0 = g2 [j1 (j1 p4 − p3) + g2 p4 + p2] + p0. (10b)

Equation (9) yields

a = 
1

0

n
n− (11)

that, when introduced into (3c), gives the following
compatibility equation

n0
2 − j1 n0 n1 − g2 n1

2 = 0 (12)

Equation (12) is a univariate twelfth-degree polynomial
equation [see (4), (8) and (10)] whose only unknown is q. The
analysis of (12) shows that the values of q which make n1

equal to zero are solution of (12) only if they also make n0

equal to zero, and, in addition, the values of q, that make n0

and n1 contemporarily equal to zero, are roots of Eq. (12) with
even multiplicity.

By using expressions (10) (see the Appendix), it can be
demonstrated that, when n0 and n1 are contemporarily equal to
zero, the fourth-degree polynomial equation (7) can be
factorized as the product of Eq. (3c) by a univariate quadratic
polynomial in a [i.e. Eq. (3c) is contained in Eq. (7)].
Therefore, two values of a are associated to each value of q,
that makes n0 and n1 contemporarily equal to zero, in the
solution of the system constituted by Eqs. (3c) and (7). These
two values of a are the two solutions of the quadratic Eq. (3c)
where the value of q, that makes n0 and n1 contemporarily
equal to zero, has been introduced in the expression of g2 [see
(4p)].

Finally, it is worth noting that, if (e1f2 − f1e2) is equal to zero
for a given couple of (q, a) values that solve Eqs. (3c) and (7),
the two Eqs. (3a) and (3b) are not independent and expressions
(5) cannot be used to compute ϕ. In this case, two values of ϕ
that contemporarily solve Eqs. (3a) and (3b) exist. Both these
solutions can be computed by solving the quadratic equation in
tan(ϕ/2) that is obtained from either Eq. (3a) or Eq. (3b) after
the introduction of the following trigonometric identities:

sinϕ = 
/2)(tan1

/2)tan(2
2 ϕ+
ϕ ,    cosϕ = 

/2)(tan1
/2)(tan1

2

2

ϕ+
ϕ− . (13)

The obtained results suggest the implementation of the
following algorithm for solving the closure equations of a SP-
PS-RS structure:

(i) all the values of q that solve Eq. (12) are computed by
using a standard software package that computes all the
roots of a polynomial equation in the complex field;

(ii) for each real value of q, computed in the previous step,
the values of n0 and n1 are computed by using
relationships (10); if n0 and n1 are not contemporarily
equal to zero, the corresponding value of a is computed
through relationship (11), otherwise the corresponding
two values of a are computed by solving Eq. (3c);

(iii) for each couple of (q, a) values, determined in the
previous step, if the corresponding value of (e1f2 − f1e2) is
different from zero, one value of ϕ is calculated by using
relationships (5), otherwise two values of ϕ are computed
by solving one out of Eqs. (3a) and (3b) after the
introduction of the trigonometric identities (13).

Since the real solutions of Eq. (12) are at most twelve, the
assembly modes of any SP-PS-RS structure are at most twelve
and the solutions of the forward position analysis of any
parallel manipulator, which generates a SP-PS-RS structure
when the active joints are locked, are as many.
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IV. NUMERICAL EXAMPLE

With reference to the introduced notations (see Fig. 5), the
proposed procedure has been applied to an SP-PS-RS structure
defined by the following data (the lengths are measured in an
arbitrary length unit): bB0 = {2, 0, 0}T, bC0 = {1, 1, 4}T, bA =
{0, 0, 0}T, bs = {− 1, 0, 0}T, bu = {0, 1, 0}T, bv = {− 1, 0, 0}T,
pA0 = {0, 0, 0}T, pC = {− 1, 1, 4}T, pB = {2, 0, 4}T, pm = {0,
−1, 0}T and b = 4.

By using the above-reported procedure the four real
assembly modes listed in Table I and the eight complex
assembly modes listed in Table II have been determined.

In Tables I and II, each row corresponds to one assembly
mode (real or complex); columns 2, 3 and 4 report the values
of the joint variables q, a and ϕ; whereas, columns 5, 6 and 7
report the components of the position vectors bB, bC and pA
that, together with the data, allow closure equations (1) to be
easily checked.

All the twelve solutions verify system (1) which proves that
the elimination process used to deduce Eq. (12) does not
introduce extraneous roots.

V. CONCLUSION

The analytic solution of the forward position analysis of all
the three-legged parallel manipulators that become structures
with topology SP-PS-RS when their active joints are locked

has been presented.
In particular, since the assembly modes of an SP-PS-RS

structure one-to-one correspond to the FPA solutions of the
PMs that become that structure when their active joints are
locked, the closure equation system of a generic SP-PS-RS
structure has been written in the form of three non-linear
equations in three unknowns. The solution of such a non-linear
system has been reduced to the determination of the roots of a
univariate twelfth-degree polynomial equation plus one simple
back substitution procedure. The proposed algorithm of
solution has been applied to a real case.

The result of this study is that the solutions of the FPA of all
the PMs which becomes SP-PS-RS structures, when their
active joints are locked, are at most twelve and can be found
through the proposed algorithm.

This work closes a research activity devoted to develop
efficient algorithms for the analytical solution of the FPA of
three-legged PMs which, when their active joints are locked,
become closed structures with three connectivity-four legs
constituted by a spherical pair in series with either a prismatic
pair or a revolute pair (i.e. legs of the following types: PS, RS,
SP and SR). There are ten different types of such structures:
3PS, 3RS, PS-2RS, RS-2PS, SP-2PS, SR-2RS, SR-2PS, SP-
2RS, SR-PS-RS and SP-PS-RS. The results of this activity are
summarized in Table III.

TABLE I: RESULTS OF THE NUMERICAL EXAMPLE: REAL ASSEMBLY MODES OF THE SP-PS-RS STRUCTURE
(THE LENGTHS ARE MEASURED IN AN ARBITRARY LENGTH UNIT, WHEREAS ϕ IS MEASURED IN DEGREES).

No. q a ϕ bB bC pA
1 −3.91561 3.91561 163.39 {5.83300,0,1.14371}T {4.91561,1,4}T {0, −3.91561,0}T

2 −1.53884 −3.53884 141.51 {5.13085,0,2.48954}T {2.53884,1,4}T {0,3.53884,0}T

3 1.46398 −1.46398 97.698 {2.53581,0,3.96395}T {−0.46398, 1, 4}T {0,1.46398,0}T

4 2 0 90 {2,0,4}T {−1,1,4}T {0,0,0}T

TABLE II: RESULTS OF THE NUMERICAL EXAMPLE: COMPLEX ASSEMBLY MODES OF THE SP-PS-RS STRUCTURE

(j= 1− , THE LENGTHS ARE MEASURED IN AN ARBITRARY LENGTH UNIT, WHEREAS ϕ IS MEASURED IN DEGREES).
No. q a ϕ bB bC pA
1 −1.32422−j 4.08343 −3.32422−j 4.08343 79.84+j 75.22 {0.594018+j 6.78711,

0,7.84647+j 1.21616}T
{2.32422+j 4.08343,

1,4}T
{0, 3.32422+j 4.08343,

0}T

2 −1.32422+j 4.08343 −3.32422+j 4.08343 79.84−j 75.22 {0.594018−j 6.78711,
0,7.84647−j 1.21616}T

{2.32422−j 4.08343,
1,4}T

{0, 3.32422−j 4.08343,
0}T

3 2.09364−j 3.95557 .0936413−j 3.95557 −15.60+j 9.819 {−1.90944−j 0.185202,
0,−1.09124+j 0.663502}T

{−1.09364+j
3.95557, 1,4}T

{0, −0.0936413+j
3.95557, 0}T

4 2.09364+j 3.95557 .0936413+j 3.95557 −15.60−j 9.819 {−1.90944+j 0.185202,0,
−1.09124−j 0.663502}T

{−1.09364−j
3.95557, 1,4}T

{0, −0.0936413−j
3.95557, 0}T

5 −2.34499−j 3.3943 2.34499+j 3.39430 74.81+j 51.74 {0.49444+j 3.979800,
0,5.54437+j 1.08071}T

{3.34499+j 3.39430,
1,4}T

{0, −2.34499 −j
3.39430, 0}T

6 −2.34499+j 3.3943 2.34499−j 3.39430 74.81−j 51.74 {0.49444−j 3.979800,
0,5.54437−j 1.08071}T

{3.34499−j 3.39430,
1,4}T

{0, −2.34499 +j
3.39430, 0}T

7 0.57081−j 4.24749 −0.57081+j 4.24749 −25.35+j 37.76 {−2.42884−j 1.21226,0,
−2.09820+j 2.55881}T

{0.429190+j 4.24749,
1,4}T

{0,0.570810−j 4.24749,
0}T

8 0.57081+j 4.24749 −0.57081−j 4.24749 −25.35−j 37.76 {−2.42884+j 1.21226,0,
−2.09820−j 2.55881}T

{0.429190−j 4.24749,
1,4}T

{0,0.570810+j 4.24749,
0}T
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TABLE III: SUMMARY OF THE RESULTS

Structure Assembly modes Reference
3PS 8 [33]
3RS 16 [31]

PS-2RS 16 [34]
RS-2PS 12 [34]
SP-2PS 8 [35]
SR-2RS 16 [32]
SR-2PS 8 [36]
SP-2RS 16 [37]

SR-PS-RS 12 [38]
SP-PS-RS 12 [This paper]

APPENDIX

If n0 and n1 contemporarily vanish, then expressions (10)
yield:

p1 = (g2 + j1
2)(j1 p4 − p3) + j1 (g2 p4 + p2), (A.1)

p0 = − g2 [j1 (j1 p4 − p3) + g2 p4 + p2]. (A.2)

The substitution of expressions (A.1) and (A.2) for p1 and
p0, respectively, into Eq. (7) yields

p4 (a2)2 + p3 (a2) a + p2 (a2) + a [(g2 + j1
2)(j1 p4 − p3)

+ j1 (g2 p4 + p2)] − g2 [j1 (j1 p4 − p3) + g2 p4 + p2] = 0 (A.3)

Equation (A.3) can be factorized as follows [note that, by
expanding (A.3) and (A.4), the resulting equations coincide]:

[p4 a2+ (p3 − j1 p4) a + g2 p4 + p2+ j1 (j1 p4 − p3)] (a2

+ j1 a − g2) = 0 (A.4)

If the second factor of the expression at the left-hand side of
Eq. (A.4) is equated to zero, an equation that coincide with Eq.
(3c) is obtained, which proves that, if n0 and n1 contemporarily
vanish, Eq. (3c) is contained in Eq. (7).
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