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Abstract— Spatial parallel mechanisms (SPMs) become

parallel structures when the actuators are locked. Parallel
structures are constituted by two rigid bodies (platform and base)
connected by a number of kinematic chains (legs) with only
passive kinematic pairs. A set of SPMs is the one collecting the
mechanisms which become SR-PS-RS structures. Such structures
have three legs: one leg of type SR, another leg of type PS and the
remaining one of type RS (P, R and S stand for prismatic pair,
revolute pair and spherical pair respectively). The analytic
determination of the assembly modes of the SR-PS-RS structures
has not been presented in the literature, yet. This paper presents
an algorithm that analytically determines the assembly modes of
the SR-PS-RS structures [i.e. that analytically solves the forward
position analysis (FPA) of the SPMs that become SR-PS-RS
structures when the actuators are locked]. In particular, the
closure equation system of a generic SR-PS-RS structure is
written in the form of three non-linear equations in three
unknowns. The solution of the non-linear system is reduced to the
determination of the roots of a twelfth-degree univariate
polynomial equation plus a simple back substitution procedure.
The proposed solution algorithm is applied to a real case. The
result of this study is that the solutions of the FPA of all these
SPMs are at most twelve and can be analytically determined
through the proposed algorithm.

Index Terms— kinematics, position analysis, parallel
mechanisms, parallel structure.

I. INTRODUCTION

PATIAL parallel mechanisms (SPMs) are traditionally
used as testing machines [1] or as simulators [2].

Moreover, some tendon-driven machines have a parallel
architecture [see [3] for Refs.]. These applications attracted the
interest of factories and research groups that operate in the
field of the civil constructions and of the building maintenance
[4-9] together with the interest of other engineering fields [see
[3] and [10] for Refs.].
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SPMs are constituted by one or more-than-one closed loops
and can be described as a number of kinematic chains (legs)
that in parallel connect the output link (end effector) to the
frame. Such mechanisms require a number of kinematic pairs
much greater than their number of degrees of freedom (dof).
Therefore, they always contain many non-actuated kinematic
pairs (passive joints) together with a number of actuated
kinematic pairs (active joints) equal to the mechanism’s dof.

These complex architectures inevitably bring complex
kinematic and dynamic behaviors and SPMs’ diffusion is
conditioned by the solution of the theoretical problems related
to them. For instance, SPMs’ design and control cannot leave
aside the identification of their singular configurations
(singularities) and the solution of their position analysis [3].
This paper is focused on the position analysis of a family of
three-legged SPMs.

The solution of the position analysis involves the solution of
two problems: the forward position analysis (FPA) and the
inverse position analysis (IPA). The FPA is the determination
of the end-effector poses (positions and orientations)
compatible with assigned values of the joint variables of the
active joints. The IPA is the determination of the values of the
joint variables of the active joints compatible with an assigned
end-effector pose. Both FPA and IPA are important in the
definition of the algorithm that controls the mechanism
motion.

A problem widely discussed in the literature has been the
FPA of the Stewart platforms [11-15]. Stewart platforms are
SPMs with six legs that, for the solution of their FPA, can be
modeled as six variable-length segments (Fig. 1). In the
Stewart platforms, the end-effector pose is controlled by
controlling the lengths of the six segments. The variable length
segments can be realized by using different type of hardware,
for instance, tightened wires driven by pulleys [6] or kinematic
chains of type UPS (U, P and S stand for universal joint,
prismatic pair and spherical pair respectively) [2]. Different
types of Stewart platforms are obtained by making the legs’
attaching points coincide in the end effector and/or in the
frame [11]. The IPA of the Stewart platforms is easy to solve;
whereas their FPA involves the solution of non-linear equation
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Fig. 1: General Stewart platform

systems and is not an easy problem even though the general
case has been recently solved [12-14]. In general, both the IPA
and the FPA of an SPM involves the solution of non-linear
equation systems and are not easy to solve (see for instance
[16]).

When all the active joints are locked (or, which is the same,
the values of all the joint variables of the active joints are
assigned and kept constant), SPMs become closed structures
where two rigid bodies (base and platform) are in parallel
connected by a number of kinematic chains (legs) with only
passive joints. If the topology of two or more-than-two SPMs
differ only for the type and/or the location of their active
joints, then they generate closed structures with the same
topology when the active joints are locked. As a consequence,
some properties of the closed structures are strictly related to
properties shared by all the SPMs that generate those closed
structures. In particular, the assembly modes, without link
permutations, of a closed structure one-to-one correspond to
the solutions of the FPA of all the SPMs that generate that
structure. Therefore, an algorithm that computes the assembly
modes of closed structures with given topology can be applied
to solve the FPA of all the SPMs that generate structures with
that topology.

A wide set of SPMs is constituted by the mechanisms that
become closed structure with topology SR-PS-RS (Fig. 2)
where the  platform and the base are connected by three legs:
one of SR type, another of PS type and the remaining one of
RS type (R stands for revolute pair). An algorithm that
analytically solves the FPA of all the mechanisms of this set is
not presented in the literature yet [17].

This paper presents an algorithm that solves in analytical
form the FPA of all the SPMs that generate structure with SR-
PS-RS topology when the active joints are locked.

In particular, firstly, the closure equation system of a

Fig. 2: Structure with topology SR-PS-RS (R, P and S stand for revolute,
prismatic and spherical pairs, respectively)

generic SR-PS-RS structure will be written in the form of three
non-linear equations in three unknowns. Then, the solution of
the non-linear system will be reduced to the determination of
the roots of a univariate-twelfth-degree polynomial equation
plus a simple back substitution procedure.

Finally, the proposed solution algorithm will be applied to a
real case.

The result of this study is that the solutions of the forward
position analysis of all the SPMs that generate structures with
SR-PS-RS topology, when the active joints are locked, are at
most twelve and can be analytically determined through the
proposed algorithm.

II. CLOSURE EQUATIONS

Figure 3 shows a generic SR-PS-RS structure and the
notations that will be used. With reference to Fig. 3, A is the
center of the spherical pair of the base. A0 is the foot of the
perpendicular through A to the axis of platform’s revolute pair
which is parallel to the unit vector m. m and n are two unit
vectors fixed in the platform and mutually orthogonal. θ is the
joint variable of platform’s revolute pair (θ is equal to zero
when the vector (A−A0) is parallel to n and has the same
direction as n). a is the length of the segment AA0. B is the
center of the spherical pair that joins the platform to the RS
leg. B0 is the foot of the perpendicular through B to the axis of
base’s revolute pair which is parallel to the unit vector u. u
and v are two unit vectors fixed in the base and mutually
orthogonal. ϕ is the joint variable of base’s revolute pair (ϕ is
equal to zero when the vector (B−B0) is parallel to v and has
the same direction as v). b is the length of the segment BB0. C
is the  center of the spherical pair that joins the platform to the
PS leg. s is a unit vector parallel to the sliding direction of the
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Fig. 3: Notations

prismatic pair. C0 is a base’s point lying on the line through C
that is parallel to s. q is the joint variable of the prismatic pair
and is the signed distance from C0 to C (q is positive when the
vector (C−C0) has the same direction as s). Sb and Sp are two
Cartesian reference systems embedded in the base and in the
platform respectively. Hereafter, the vectors with a superscript
b (p) on the left are projected on Sb (Sp) and, if they are
position vectors, they are defined in Sb (Sp) and projected on
Sb (Sp). Finally, d will be the length of the segment BC.

With these notations, the closure equations of a SR-PS-RS
structure can be written in the following way:

(bB − bC) ⋅ (bB − bC) = d2 (1a)
(bB − bA) ⋅ (bB − bA) = (pB − pA) ⋅ (pB − pA) (1b)
(bC − bA) ⋅ (bC − bA) = (pC − pA) ⋅ (pC − pA) (1c)

where

pA = pA0 + a (pn cosθ + pm × pn sinθ) (2a)
bB = bB0 + b (bv cosϕ + bu × bv sinϕ) (2b)
bC = bC0 + q bs (2c)

The introduction of (2) into (1) transforms system (1) as
follows

e1 cosϕ + f1 sinϕ = g1 (3a)
e2 cosϕ + f2 sinϕ = g2 + j1 cosθ + k1 sinθ (3b)
j2 cosθ + k2 sinθ = g3 (3c)

where

e1 = e01 + q e11; (4a)
e01 = 2 b (bB0 − bC0) ⋅ bv; (4b)
e11 = − 2 b bv ⋅ bs; (4c)

f1 = f01 + q f11; (4d)
f01 = 2 b (bB0 − bC0) ⋅ (bu × bv); (4e)
f11 = − 2 b (bu × bv) ⋅ bs; (4f)
g1 = − q2 + g11 q + g01; (4g)
g01 = d2 − b2 − (bB0 − bC0) ⋅ (bB0 − bC0); (4h)
g11 = 2 (bB0 − bC0) ⋅ bs; (4i)
e2 = 2 b (bB0 − bA) ⋅ bv; (4j)
f2 = 2 b (bB0 − bA) ⋅ (bu × bv); (4k)
j1 = − 2 a (pB − pA0) ⋅ pn; (4l)
k1 = − 2 a (pB − pA0) ⋅ (pm × pn); (4m)
g2 = a2−b2+(pB−pA0)⋅(pB−pA0)−(bB0−bA)⋅(bB0−bA); (4n)
j2 = 2 a (pC − pA0) ⋅ pn; (4o)
k2 = 2 a (pC − pA0) ⋅ (pm × pn); (4p)
g3 = − q2 + g13 q + g03; (4q)
g13 = − 2 (bC0 − bA) ⋅ bs; (4r)
g03 = a2+(pC−pA0)⋅(pC−pA0)−(bC0−bA)⋅(bC0−bA). (4s)

Equations (3) form a system of three non-linear equations in
three unknowns: ϕ, θ and q.

An one-to-one correspondence exists between the triplets of
(ϕ, θ, q) values that satisfy system (3) and the assembly modes
of the SR-PS-RS structure.

In the next section, an equation in the only variable ϕ will
be obtained by the successive elimination of θ and q from Eqs.
(3), then an analytic solution procedure for system (3) will be
proposed.

III. ANALYTIC SOLUTION

Equation (3b) and (3c) are linear in cosθ and sinθ and give
the explicit expressions
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−=θ , (5)

where t = e2cosϕ + f2sinϕ − g2. Expressions (5) depend only on
q and ϕ.

The introduction of expressions (5) into the trigonometric
identity cos2θ + sin2θ = 1 yields

(t k2 − k1g3)
2 + (j1g3 − t j2)

2 = (j1k2 − k1j2)
2 (6)

Equation (6) contains only the two unknowns ϕ and q. The
couples of (ϕ, q) values that solve Eq. (6) are also solutions of
Eqs. (3b) and (3c) where cosθ and sinθ are computed through
expressions (5).

By expanding the expressions appearing in (6) and taking
into account (4), Eq. (6) becomes

h4 (q
2)2 + h3 (q

2) q + h2 (q
2) + h1 q + h0 = 0 (7)
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h4 = k1
2 + j1

2; h3 = − 2 g13 h4; (8a)
h2 = (g13

2 − 2 g03) h4 + 2 t (k1k2 + j1j2); (8b)
h1 = 2 g13 g03 h4 − 2 t g13 (k1k2 + j1j2); (8c)
h0 = g03

2 h4−2t g03 (k1k2+j1j2)+t2 (k2
2+j2

2)−(j1k2−k1j2)
2. (8d)

Moreover, Eq. (3a) can be rearranged as follows

q2 = w1 q + w0 (9)

where

w1 = − e11 cosϕ − f11 sinϕ + g11; (10a)
w0 = − e01 cosϕ − f01 sinϕ + g01; (10b)

Equations (7) and (9) are two polynomial equations in q
whose coefficients depend only on ϕ. Such equations
constitute a system of two equations in the two unknowns ϕ
and q whose solutions coincide with the solutions of system
(3) where cosθ and sinθ are computed through expressions (5).

By substituting the right-hand side of Eq. (9) for q2 into Eq.
(7), expanding the resulting equation and, finally, substituting
again the right-hand side of Eq. (9) for q2 into the resulting
equation, Eq. (7) becomes

r1 q + r0 = 0, (11)

where

r1 = (w0 + w1
2)(w1 h4 + h3) + w1 (w0 h4 + h2) + h1, (12a)

r0 = w0 [w1 (w1 h4 + h3) + w0 h4 + h2] + h0. (12b)

Equation (11) yields

q = 
1

0

r

r− (13)

that, when introduced into (9), gives the following
compatibility equation

r0
2 + w1 r0 r1 − w0 r1

2 = 0 (14)

Equation (14) contains only the unknown ϕ. The analysis of
(14) shows that the values of ϕ which make r1 equal to zero are
solution of (14) only if they also make r0 equal to zero, and, in
addition, the values of ϕ, that make r0 and r1 contemporarily
equal to zero, are roots of Eq. (14) with even multiplicity.

By using expressions (12) (see the Appendix), it can be
demonstrated that, when r0 and r1 are contemporarily equal to
zero, the fourth-degree polynomial equation (7) can be
factorized as the product of Eq. (9) by a polynomial quadratic
in q [i.e. Eq. (9) is contained in Eq. (7)]. Therefore, two values
of q are associated to each value of ϕ, that makes r0 and r1

contemporarily equal to zero, in the solution of the system
constituted by Eqs. (7) and (9). These two values of q are the

two solutions of the quadratic Eq. (9) where the value of ϕ,
that makes r0 and r1 contemporarily equal to zero, has been
introduced in the expressions of w0 and w1 [see (10)].

By introducing the expressions of r0, r1, w0 and w1 [see (8),
(10) and (12)] into Eq. (14) and expanding the resulting
equation with the help of an algebraic manipulator [18], Eq.
(14) can be written in the following form:

∑
≤β+α

=βα

βα
αβ =ϕϕ

7
7,0,

0sincosi (15)

where the coefficients iαβ are geometric constants.
Equation (15) can be transformed into a univariate

polynomial equation in x=tan(ϕ/2) by introducing the
following trigonometric identities into (15)

sinϕ = 2x1

x2

+
,    cosϕ = 2

2

x1

x1

+
−

(16)

and rationalizing the resulting equation. So doing, with the
help of an algebraic manipulator [18], Eq. (15) becomes

∑
=γ

γ
γ =

12,0

0xp (17)

where the coefficients pγ are geometric constants containing
only the coefficients iαβ.

Equation (17) is a univariate twelfth-degree polynomial
equation in x. Therefore, the values of ϕ that solve Eq. (14) are
at most twelve and can be found by solving Eq. (17) with a
standard software package, that gives all the roots of a
polynomial equation in the complex field, and by using
relationships (16). Equation (17) is the eliminant of system (3).

Finally, it is worth noting that, if (j1k2 − k1j2) is equal to zero
for a given couple of (q, ϕ) values that solve Eqs. (7) and (9),
the two Eqs. (3b) and (3c) are not independent and expressions
(5) cannot be used to compute θ. In this case, two values of θ
that contemporarily solve Eqs. (3b) and (3c) exist. Both these
solutions can be computed by solving the quadratic equation in
tan(θ/2) that is obtained from either Eq. (3b) or Eq. (3c) after
the introduction of the following trigonometric identities:

sinθ = 
/2)(tan1

/2)tan(2
2 θ+
θ

,    cosθ = 
/2)(tan1

/2)(tan1
2

2

θ+
θ−

. (18)

The obtained results suggest the implementation of the
following algorithm for solving the closure equations of a SR-
PS-RS structure [ATAN2(y, z) is a standard function which
gives the angle between −π and π radians whose sine and
cosine are y/(z2+y2)1/2 and z/(z2+y2)1/2 respectively]:

(a) all the values of x that solve Eq. (17) are computed
by using a standard software package that computes
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all the roots of a polynomial equation in the complex
field;

(b) for each real value of x, computed in the previous
step, the corresponding values of ϕ are computed by
using relationships (16) and the ATAN2 function;

(c) for each real value of ϕ, computed in the previous
step, the values of r0 and r1 are computed by using
relationships (12); if r0 and r1 are not contemporarily
equal to zero, then the corresponding value of q is
computed through relationship (13), else the
corresponding two values of q are computed by
solving Eq. (9);

(d) for each couple of (ϕ, q) values, calculated in the
previous step, if (j1k2 − k1j2) is not equal to zero,
then one value of θ is computed by using
relationships (5) and the ATAN2 function; else two
values of θ are computed by solving one out of Eqs.
(3b) and (3c) after the introduction of relationships
(18).

Since the real solutions of Eq. (17) are at most twelve, the
assembly modes of any SR-PS-RS structure are at most twelve
and the solutions of the forward position analysis of any spatial
parallel mechanism, which generates an SR-PS-RS structure
when the active joints are locked, are as many.

IV. CASE STUDY

With reference to the introduced notations (see Fig. 3), the
proposed procedure has been applied to an SR-PS-RS
structure defined by the following data (the lengths are
measured in an arbitrary length unit): bB0 = {30, 0, 10}T, bC0 =
{20, 10, 50}T, bA = {10, 0, 10}T, bs = {− 1, 0, 0}T, bu = {0, 1,
0}T, bv = {− 1, 0, 0}T, pA0 = {0, 0, 30}T, pC = {− 10, 10, 30}T,
pB = {20, 0, 30}T, pm = {0, −1, 0}T, pn = {1, 0, 0}T, a = 35 and
b = 40.

By using the above-reported procedure, the four real
assembly modes listed in Table I and the eight complex
assembly modes listed in Table II have been determined.

In Tables I and II, each row corresponds to one assembly
mode (real or complex); columns 2, 3 and 4 report the values
of the joint variables ϕ, q and θ; whereas, columns 5, 6 and 7
report the components of the position vectors bB, bC and pA
that, together with the data, allow closure equations (1) to be
easily checked.

All the twelve solutions verify system (1) which proves that
the elimination process used to deduce Eq. (17) does not
introduce extraneous roots.

V. CONCLUSION

The analytic-form solution of the forward position analysis
of all the spatial parallel mechanisms that generate SR-PS-RS

TABLE I: RESULTS OF THE NUMERICAL EXAMPLE: REAL ASSEMBLY MODES OF THE SR-PS-RS STRUCTURE (THE

LENGTHS ARE MEASURED IN AN ARBITRARY LENGTH UNIT, WHEREAS ϕ AND θ ARE MEASURED IN DEGREES).

No. ϕ q θ bB bC pA
1 14.51 27.6635 −33.01 {−8.72498, 0, 20.01878}T {−7.66351, 10, 50}T {29.34998, 0, 10.93226}T

2 14.51 27.6635 33.01 {−8.72498, 0, 20.01878}T {−7.66351, 10, 50}T {29.34998, 0, 49.06774}T

3 36.82 −3.33861 −49.68 {−2.02092, 0, 33.97208}T {23.33861, 10, 50}T {22.64592, 0, 3.31363}T

4 36.82 −3.33861 49.68 {−2.02092, 0, 33.97208}T {23.33861, 10, 50}T {22.64592, 0, 56.68637}T

TABLE II: RESULTS OF THE NUMERICAL EXAMPLE: COMPLEX ASSEMBLY MODES OF THE SR-PS-RS STRUCTURE (j= 1− ,
THE LENGTHS ARE MEASURED IN AN ARBITRARY LENGTH UNIT, WHEREAS ϕ AND θ ARE MEASURED IN DEGREES).

No. ϕ q θ bB bC pA
1 −114.87−j 97.80 −12.1327+j 43.7052 −119.45−j107.26 {77.88950 +j 96.73143, 0,

−93.31503 + j 44.83781}T
{32.13270 −j

43.70522, 10, 50}T
{−57.26450−j 96.73143, 0,
−71.41912+j 54.61768}T

2 −114.87−j 97.80 −12.1327+j 43.7052 119.45 +j 107.26 {77.88950 +j 96.73143, 0,
−93.31503 + j 44.83781}T

{32.13270 −j
43.70522, 10, 50}T

{−57.26450−j 96.73143, 0,
131.4191−j 54.61768}T

3 −114.87+j 97.80 −12.1327−j 43.7052 −119.45 +j 107.26 {77.88950 −j 96.73143, 0,
−93.31503 −j 44.83781}T

{32.13270 +j
43.70522, 10, 50}T

{−57.26450+j 96.73143, 0,
−71.41912−j 54.61768}T

4 −114.87+j 97.80 −12.1327−j 43.7052 119.45 −j 107.26 {77.88950 −j 96.73143, 0,
−93.31503 −j 44.83781}T

{32.13270 +j
43.70522, 10, 50}T

{−57.26450+j 96.73143, 0,
131.4191+j 54.61768}T

5 89.21−j 31.81 19.9702+j 23.4323 −101.90+j 36.55 {29.35845 −j 23.36262, 0,
56.31960−j 0.323585}T

{0.0297556 −j
23.43234, 10, 50}T

{−8.73345+j 23.36262, 0,
−11.45793−j 4.921525}T

6 89.21−j 31.81 19.9702+j 23.4323 101.90 −j 36.55 {29.35845 −j 23.36262, 0,
56.31960−j 0.323585}T

{0.0297556 −j
23.43234, 10, 50}T

{−8.73345+j 23.36262, 0,
71.45793+j 4.921525}T

7 89.21+j 31.81 19.9702−j 23.4323 −101.90−j 36.55 {29.35845 +j 23.36262, 0,
56.31960+j 0.323585}T

{0.0297556 +j
23.43234, 10, 50}T

{−8.73345−j 23.36262, 0,
−11.45793+j 4.921525}T

8 89.21+j 31.81 19.9702−j 23.4323 101.90 +j 36.55 {29.35845 +j 23.36262, 0,
56.31960+j 0.323585}T

{0.0297556 +j
23.43234, 10, 50}T

{−8.73345−j 23.36262, 0,
71.45793−j 4.921525}T
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structures when the active joints are locked has been
presented.

In particular, since the determination of the assembly modes
of the SR-PS-RS structures one-to-one correspond to the FPA
solutions of the mechanisms that generate those structures, the
closure equation system of a generic SR-PS-RS structure has
been written in the form of three non-linear equations in three
unknowns. The solution of the non-linear system has been
reduced to the determination of the roots of a univariate
twelfth-degree polynomial equation with real coefficients plus
a simple back substitution procedure.

The proposed solution algorithm is applied to a real case.
The result of this study is that the solutions of the forward

position analysis of all the spatial parallel mechanisms that
generate SR-PS-RS structures when the active joints are
locked are at most twelve and can be analytically determined
through the proposed algorithm.

APPENDIX

If r0 and r1 contemporarily vanish, then expressions (12)
yield:

h1 = − (w0 + w1
2) (w1 h4 + h3) − w1 (w0 h4 + h2), (A.1)

h0 = − w0 [w1 (w1 h4 + h3) + w0 h4 + h2]. (A.2)

The substitution of expressions (A.1) and (A.2) for h1 and h0

respectively into Eq. (7) yields

h4 (q
2)2 + h3 (q

2) q + h2 (q
2) − q [(w0 + w1

2) (w1 h4 + h3) +
w1 (w0 h4 + h2)] − w0 [w1 (w1 h4 + h3) + w0 h4 + h2] = 0 (A.3)

Equation (A.3) can be factorized as follows [note that, by
expanding (A.3) and (A.4), the resulting equations coincide]:

[h4 q
2+ (w1 h4 + h3) q + w1 (w1 h4 + h3) + w0 h4 + h2] (q

2 −
w1 q − w0) = 0 (A.4)

If the second factor of the expression at the left-hand side of
Eq. (A.4) is equated to zero, an equation that coincide with Eq.
(9) is obtained, which proves that, if r0 and r1 contemporarily
vanish, Eq. (9) is contained in Eq. (7).
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