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Abstract—Conceptual cost estimate plays an essential role in 

project feasibility study. In practice, it is performed based on 
estimator’s experience. However, due to the inaccuracy of cost 
estimate, budgeting and cost control are planned and executed 
inefficiently. Support Vector Machines (SVMs), an Artificial 
Intelligent technique, is used to conduct the construction cost 
estimate. The algorithms of SVMs solve a convex optimization 
problem in a relative short time with satisfied accurate solution. 

Applying SVMs, the construction conceptual cost estimate 
model is developed for owners and planners to predict the 
construction cost of a project. The impact factors of cost estimate 
are identified through literature review and interview with 
experts. The cost data of 29 construction projects are used as 
training cases. Based on the training results, the average 
prediction error is less than 10% and the computation time is less 
than 5 minutes. The error is satisfied for the conceptual cost 
estimate of a project during the planning and conceptual design 
phase. Case studies show SVMs can efficiently and accurately 
assist planners to predict the construction cost. 
 

Index Terms—Construction Cost, Conceptual Cost Estimate, 
Support Vector Machines. 
 

I. INTRODUCTION 
 Construction conceptual cost estimate provides a basis of 

planners to evaluate the project feasibility in the conceptual 
planning phase. The impacts of inaccurate cost estimating on 
project feasibility as well as profitability are significant. 
Overestimated costs result a low feasibility divesting client to 
own new projects. On the other hand, an underestimated cost 
could mislead planners to a high feasibility, which cause client 
additional costs in the construction phase. Thus, overestimated 
or underestimated costs affect clients’ profits requiring a 
method to measure as accurate as possible.   
The conceptual cost estimate is experience oriented. In 

conceptual planning phase, cost estimators can only estimate 
building cost according to preliminary design and project 
concepts.  Under inadequate information circumstance, cost 
estimators refer to historical cases, and then judge conceptual 
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cost based on their experiences. Nevertheless, building cost is 
effected by numerous factors.  Some of these factors are full of 
uncertainty such as geological property and decorative class.  
Due to such complex and uncertain evaluation process, 
estimators evaluate building cost using a simple linear manner 
cannot accurately evaluate the costs.  As a result, present 
building cost estimates are rough. 
Hsieh(2002) employs the Evolutionary Fuzzy Neural 

Inference Model (EFNIM) to develop an evolutionary 
construction conceptual cost estimate model. In the model, 
Genetic Algorithms are primarily used for optimization; Fuzzy 
Logic for representing uncertainty and approximate reasoning; 
and Neural Networks for fuzzy input-output mapping. 
However the computation run time to search optimal solution 
takes very long. In order to reduce run time, this study using 
Support Vector Machine (SVM) to estimate construction cost.  
The remainder of the paper is organized as follows: In section 

2, we introduce Neural Networks (NNs) and Evolutionary 
Fuzzy Neural Inference Model (EFNIM). In section 3, We 
define the regression problem and present our approach using 
SVMs. In section 4 this study compares prediction accuracy 
and required effort of the SVMs with EFNIM and NNs. Finally 
in section 5, we conclude and discuss avenues for future work. 

 

II. NEURAL NETWORKS AND EVOLUTIONARY FUZZY NEURAL 
INFERENCE MODEL 

Most problems in construction management are complex, full 
of uncertainty, and vary with environment. Genetic Algorithms 
(GAs), Fuzzy Logic (FL), and Neural Networks (NNs) have 
been successfully applied in construction management to solve 
various kinds of problems. These three computing methods 
offset the demerits of one paradigm by the merits of another. 
Considering the characteristics and merits of each method,(Ko 
2002) combines the above three techniques to develop an 
Evolutionary Fuzzy Neural Inference Model (EFNIM). In the 
model, GAs is primarily concerned with optimization; FL with 
imprecision and approximate reasoning; and NNs with learning 
and curve fitting; Thus, the best adaptation mode is 
automatically identified. 
The architecture of the EFNIM is shown in Fig. 1. The 

proposed EFNIM is a fusion of FL, NN, and GA paradigms. 
The combination of FL, NNs, and GAs offset the demerits of 
one paradigm by the merits of another. In the formulated model, 
FL is primarily concerned with imprecision and approximate 
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reasoning; NN with learning and curve fitting; and GAs with 
optimization. 

Input patterns
Knowledge

Fuzzifier Defuzzifier
Learning engine

(NN)

MF
NN’s parameter and topology

Optimization
(GA)  

Fig. 1. EFNIM Architecture[1] 
 
FL and NNs are complementary technologies. The 

combination of these two technologies into an integrated 
system appears a promising path towards the development of 
intelligent systems capable of capturing qualities characterizing 
the human brain. In Fig. 1, fuzzy inference engine and fuzzy 
rule base in the traditional fuzzy logic system are replaced by 
the NN. The NN is used to overcome the difficulties in 
acquisition of fuzzy rules and determination of composition 
operator and to offer a learning ability to the integrated system. 
The combination of the FL and NN is regarded as a “neuro with 
fuzzy input-output,” which is also a neural network with both 
fuzzy inputs and fuzzy outputs. In this work, for convenience to 
describe the “neuro with fuzzy input-output,” it is initialized by 
the FNN which is a general phrase to express fusion/union of 
FL and NN.   
Although the FNN is more reasonable than traditional FL to 

simulate the characteristics and process of human inference, the 
FNN for learning different tasks has demonstrated the difficulty 
in selecting an appropriate topology as well as appropriate 
parameters for a network. In addition, the determination of 
suitable distribution for the MFs, for solving disparate 
problems is time consuming and the difficulty increases with 
problem complexity. GA is an effective approach to conquer 
the drawbacks of FNN. Therefore, the EFNIM employs GA to 
simultaneously search for the fittest shapes of MFs, optimum 
FNN topology, and optimum parameters of FNN. 
 

III. SUPPORT VECTOR MACHINES 
The theory of support vector machines (SVMs) is a new 

statistical technique and has drawn much attention on this topic 
in recent years. This learning theory can be seen as an 
alternative training technique for polynomial, radial basis 
function and multi-layer percept classifiers. SVMs are based on 
the idea of structural risk minimization (SRM) induction 
principle [2] that aims at minimizing a bound on the 
generalization error, rather than minimizing the mean square 
error. In many applications, SVMs have been shown to provide 
higher performance than traditional learning machines and has 
been introduced as powerful tools for solving classification and 
regression problems. 

For the classification case, SVMs find a separating hyperplane 
that maximizes the margin between two classes. Maximizing 
the margin is a quadratic programming (QP) problem and can 
be solved from its dual problem by introducing Lagrangian 
multipliers [2]. In most cases, searching suitable hyperplane in 
input space is a too restrictive application to be of practical use. 
The solution to this situation is mapping the input space into a 
higher dimension feature space and searching the optimal 
hyperplane in this feature space. Without any knowledge of the 
mapping, the SVMs find the optimal hyperplane by using the 
dot product functions in feature space that are called kernels. 
The solution of the optimal hyperplane can be written as a 
combination of a few input points that are called support 
vectors. The equations of regression problems in SVMs are 
similar with the equations of classification problems except the 
target variables. By introducing the ε-insensitive loss function 
and doing some small modifications in the formations of 
equations, the theory of SVMs can be easily applied into 
regression problems. 
Suppose we are given a set S of training points, (y1; x1),…., 

(yi; xi). Where NRxi ∈  and Ryi ∈  for i = 1,…,i. We wish to 
find the regression function, 

fR(x) = w‧x + b                                                        (1) 

defined by the pair (w, b), where NRw ∈  and Rb ∈ . SVMs 
approximate the function with the following characteristics: 
SVMs define the regression estimation with respect to the ε
-insensitive loss function. SVMs minimize the risk based on the 
structural risk minimization (SRM) principle which is defined 
by the inequality .constw ≤ [2] Formally we can write this 

problem as a convex optimization problem by requiring: 

Minimize ww ⋅
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Analogously to the soft margin loss function, one can introduce 
slack variables iξ , *

iξ  to cope with otherwise infeasible 
constraints of the optimization problem. Hence we arrive at the 
formulation: 
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Fig. 2. The soft margin with ε-insensitive loss function.[3] 

The constant C > 0 determines the trade off between the 
flatness of  fR and the amount up to which deviations larger than 
ε  are tolerated. Figure 2 is a description of the situation 
graphically. The problem (3) can be solved by constructing a 
Lagrangian, 
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Where 0,,, ** ≥iiii ηηαα . The solution to the quadratic 
programming problem is equivalent to determining the saddle 
point of the (4).At the saddle point, we obtain: 
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Substituting (5), (6) and (7) into the right hand side of (4), we 
see the problem reduces to 

Maximize
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The Karush-Kuhn-Tucker conditions play an important role 
and are defined as: 

( ) libxwy iiii ,...,1,0 ==+⋅+−+ ξεα                          (9) 

( ) libxwy iiii ,...,1,0** ==−⋅−++ ξεα                       (10) 

( ) liC ii ,...,1,0 ==− ξα                                                 (11) 

( ) liC ii ,...,1,0** ==− ξα                                               (12) 

The scalar b  can be determined from the 

Karush-Kuhn-Tucker conditions. Substituting equation (6) into 

equation (1), the regression function can be rewritten as : 

( ) ( ) bxxxf i
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SVMs can process the training points in the feature space by 
a map ZR N →:ϕ , and then applying the standard regression 
algorithm of SVMs. Let )(xz ϕ= denote the corresponding 
feature space vector with a mapping ϕ  from NR  to a feature 
space Z. We just only provide a function K(.,.) called kernel 
which uses the points in input space only, can compute the dot 
product in feature space Z, that is 

( ) ( ) ( )jijiji xxkxxzz ,=⋅=⋅ ϕϕ                            (14) 

Thus, the nonlinear regression problem can be found as the 
solution of  

Maximize 
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The decision function is then rewritten as 

( ) ( ) ( ) bxxKxf i
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Then we can feed the data (xi) into the decision function and 
get output data (yi). 

IV. MODEL VALIDATION 
Hsieh (2002) identified 10 factors influencing building cost 

in the conceptual phase.  These factors can be categorized into 
two groups: owner’s preliminary requirements and site 
investigations. Table I reveals 26 input patterns and three 
validation cases collected from Hsieh (2002).  These patterns 
are real collective housing projects located in northern area of 
Taiwan with reinforced concrete structures from 1997 to 2001. 

The performance of SVMs, NNs, and the EFNIM in building 
cost estimating is compared in Table III.  The accuracy of each 
method is evaluated using the RMSE.  As shown in Table 3, 
Based on the training results, the average prediction error of 
SVMs is less than 18% and the computation time is less than 5 
minutes, the EFNIM excels the rest of the methods and 
computation time is more than 300 minutes.  

According to the literature review, the deviation of present 
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conceptual cost estimating is about 25% (Zhong 1992; Huang 
1993). Comparing the estimating model between SVMs and 
EFNIM, SVMs dramatically promotes the computation speed. 
The SVMs improves time requirement for developing the 
solution as well as prediction accuracy for the problem. Thus, 
planners can apply the SVMs in conceptual planning phase to 
estimate building cost. According to the inferred building cost, 
clients can make proper decisions to assess the project 
feasibility.  In addition, the proposed method may assist clients 
to make various decisions, such as budgeting, tendering and 
awarding, and financial planning. 

TABLE I PATTERNS FOR CONCEPTUAL ESTIMATING OF BUILDING COST 

Input patterns 

Input Output

no. 
Buildin
g cost 1 2 3 4 5 6 7 8 9 10 11 

1 19519 872.97 1 67 1 50 6423.93 10 3 2 2 0.4325
2 21370 1646.83 1 0 1 24 6163.21 11 2 2 3 0.5203
3 29499 2168.94 1 0 1 13 6240.83 14 2 2 3 0.9056
4 18631 1777.74 2 150 1 79 8314.86 7 1 1 2 0.3904
5 27844 2869.94 1 46 1 146 17348.25 9 2 1 3 0.8272
6 29731 3756.89 1 25 1 87 5966.23 10 2 3 3 0.9167
7 17041 3018.93 1 0 1 201 21766.78 16 2 2 2 0.3150
8 14129 890.62 1 127 1 12 9545.90 12 3 1 1 0.1770
9 12154 5778.86 1 150 1 227 39390.72 14 3 1 1 0.0833
10 22070 2862.80 1 0 1 78 15240.96 12 2 2 3 0.5535
11 16906 1851.19 1 74 1 182 11910.44 14 3 2 2 0.3086
12 14864 2148.71 2 43 1 46 15659.10 14 2 2 1 0.2118
13 12287 3225.90 1 90 1 128 15900.32 9 2 1 1 0.0896
14 18894 2786.71 2 0 1 133 32888.41 24 4 2 2 0.4029
15 19629 833.04 1 152 1 126 7775.01 14 3 2 2 0.4377
16 19151 1315.67 3 243 1 10 6899.00 6 2 3 2 0.4150
17 25601 2302.02 1 87 1 58 18465.64 14 3 3 3 0.7208
18 23977 806.99 1 33 1 72 7854.34 14 3 3 3 0.6438
19 27083 4375.36 1 0 1 49 14029.39 11 2 3 3 0.7911
20 14713 790.06 1 97 1 32 5571.66 12 2 2 1 0.2046
21 24599 1554.47 1 104 1 194 11872.69 12 2 3 3 0.6733
22 21430 2781.05 1 25 1 57 5966.23 10 1 2 2 0.5231
23 20702 7607.80 1 96 1 236 25861.58 17 3 1 2 0.4886
24 23141 1889.97 1 84 1 196 10888.98 13 2 3 3 0.6042
25 12294 2920.92 1 137 1 134 15500.46 8 2 1 1 0.0900
26 12182 1358.97 2 29 1 80 8146.24 9 2 1 1 0.0847

27 25285 1748.88 1 36 1 86 13736.74 12 2 3 3 0.7059
28 22656 2315.94 1 147 1 83 12034.57 11 2 1 3 0.5812
29 16016 3146.93 2 52 1 144 18691.88 9 2 1 2 0.2664

Note: The captions of above numbered columns are: (1): Site 
area (in square meters). (2): Geology property. (3): Influencing 
householder number. (4): Earthquake impact. (5): Planning 
householder number. (6): Total floor area (in square meters). 
(7): Floor over ground (in stories). (8): Floor under ground (in 
stories). (9): Decoration class. (10): Facility class. (11): 
Normalized building cost.  Building cost is in NTD (New 
Taiwan Dollars) per square meters.   

In Table I, (1), (3), (5), (6), (7), and (8) are quantitative 
factors, whereas columns (2), (4), (9), and (10) are qualitative 
factors.  Qualitative factors are described in Table II.   

TABLE II DESCRIPTION OF QUALITATIVE FACTORS FOR CONCEPTUAL COST 
ESTIMATING 

Influencing factor Qualitative option Value 

Soft 1 
Medium 2 

Geology property 

Hard 3 
Low 1 Earthquake impact 
High 2 

Basic type 1 
Normal type 2 

Decoration class 

Luxurious type 3 
Basic type 1 

Normal type 2 
Facility class 

Luxurious type 3 

TABLE III GENERALIZATION COMPARISON FOR CONCEPTUAL ESTIMATING OF 
BUILDING COST 

Pattern 
no. Building cost

SVMs 
estimated cost 

NNs 
estimated cost

EFNIM 
estimated cost

27 0.7059 0.6639 0.0009 0.6822 
28 0.5812 0.7212 0.0009 0.7194 
29 0.2664 0.3208 0.0009 0.2543 

RMSE 0.09 0.5491 0.0813 

Training time Less than 5 
minutes 

More than 5 
minutes 

Above 300 
minutes 

Note:Real building cost is multiplied by 21093.02 (in 
NTD/m2).   
 

V. CONCLUSION 
In this thesis, we will summarize the above-mentioned 

process of study and achievement of study as follows: 
(1) This study has proposed a new method to predict the 
construction cost of a project. Such a model would solve 
construction conceptual cost estimate problem in a relative 
short time with satisfied accurate solution.  
(2) Through the cost estimate method, the designing authority 
could calculate the engineering cost based on project contents 
proposed by customers. Customer could then assess the 
feasibility based on the proposed project contents and cost from 
related authority. A concrete project content and estimated cost 
could be established in time, as well as cost and requirement 
could fit the need. 
(3) With the application of EFNIM, this study enhances the 
accuracy of price estimate effectively, and decreases the 
tolerance of rough cost estimate down to ±15%, while for 
sketchy cost estimate down to within ±10%. 
(4) With the application of SVMs, this study predict the 
building cost efficiently, and training time is less than 5 
minutes.  
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