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Abstract—Real-time decision-making with partial information 

is commonplace in the daily tasks of a construction 
manager/engineer. However, traditional decision support systems 
(DSSs) do not support partial information inference. Data 
pre-processing was adopted to solve the data-incompleteness 
problem. Unfortunately, such approach may be biased. This 
paper presents a newly developed neuro-fuzzy system, named 
Variable-attribute Fuzzy Adaptive Logic Control Network 
(VaFALCON), for decision-making under partial information 
environment with the untreated original incomplete data. Two 
case studies with 91.7% and 83.3% attribute information were 
conducted to test the proposed VaFALCON system. It is found 
that the average accuracy recovery ratio (AARR) is between 
90.57% and 95.68% for testing data with 91.7% partial 
information, and is between 86.03% and 93.67% for testing data 
with 83.3% partial information. 
 

Index Terms—neuro-fuzzy system, real-time decision making, 
partial information, AI. 
 

I. INTRODUCTION 
ANY construction management activities rely on 
real-time decision-making with tools such as decision 

support system (DSS). Such activities include conceptual cost 
estimation for emergent construction works, duration 
estimation for selection of alternative methods, risk assessment 
of site conditions, etc. However, complete information required 
for a DSS is hard to acquire due to time constraint in real-time 
processes. Most traditional DSSs were unable to handle 
incomplete information in their reasoning processes and thus 
failed to provide useful assistance for the decision maker before 
complete information is available. This has severely reduced 
the usability of the DSS. In this paper, a newly developed 
VaFALCON [1] approach is proposed to handle partial 
information for a DSS. The proposed VaFALCON adopts the 
VANS (variable attribute network structure) [1] method to 
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construct the neuro-fuzzy rule-based system, which is able to 
handle any combination of available attribute values. Thus, 
partial attribute information can be fully utilized during the 
decision-making process. Two real world cases are studied to 
test the applicability of VaFALCON for handling various 
degrees of partial attribute information.  

The reset o this paper is organized in the following manner: 
In the second section, previous researches related to partial 
information decision-making are reviewed; in the third section, 
the VaFALCON approach with VANS method is described for 
solving the partial information decision-making problems; in 
the forth section, two real world cases are tested by 
VaFALCON with various degrees of partial attribute 
information; in the fifth section, conclusions are drawn and 
future directions of research are recommended.  

 

II. PREVIOUS RESEARCHES RELATED TO PARTIAL 
INFORMATION DECISION-MAKING  

In recent years many researchers have tackled the problems 
of missing attributes values [8], [2], [3], [4] [5]. Among those 
works, Rough Set enables the expression of imprecise data in a 
precise way by a set of conditional attributes in a data table [4]. 
The Rough Set provides indiscernibility relation for handling 
missing attributes [6]. In the other approaches, LEM1 and 
LEM2 methods are proposed to search for a set of decision 
rules for classification of incomplete attribute values [7]. 
Moreover, C4.5 method was proposed by Quinlan to generate 
induction rules from a set of incomplete data [5]. The 
decomposition method was proposed by another researcher to 
handle incomplete attribute values [8]. The decomposition 
method consists of four steps: (1) Decomposition—greedily 
generating filling patterns that meet certain properties; (2) 
Splitting data into subtables according to filling patterns; (3) 
Inducing classifier from subtables; and (4) 
Integration—Inducing classifier from answers of classifiers 
based on subtables. 

Even though some of the above approaches provided 
promising results for constructing precise classifiers, the 
procedure of most above mentioned methods are quite tedious 
and involved. In some approaches, a priori knowledge is 
required to construct the classifiers. It is desirable to develop a 
method that takes incomplete attribute values as complete data 
in the learning (or training) and inference processes of a DSS. 
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III. VAFALCON AND VANS 

A. Structure of VaFALCON 
Variable-attribute Fuzzy Adaptive Logic Control Network 

(VaFALCON) [1] is a neuro fuzzy system that evolved from 
the Fuzzy Adaptive Logic Control Network (FALCON) 
originally developed by Lin and Lee [9]. Fig. 1 shows the 
generic structure of a FALCON model. A standard FALCON 
consists of five layers. Each layer consists of nodes with proper 
numbers of fan-in and fan-out connections represented by 
weights assigned to the nodes. The fan-in connections connect 
the nodes of the previous layer with the nodes of the current 
layer. The fan-out connections connect nodes of the current 
layer with nodes of the subsequent layer. An integration 
function is associated with the fan-in connections of a node. 
The integration function can be a summation, activation, or 
fuzzy operation. There are five layers in a FALCON: (1) Layer 
1—input layer, which takes input attribute values from outside 
world; (2) Layer 2—input term nodes, which fuzzify the input 
attribute values into fuzzy variables; (3) Layer 3—rule nodes, 
which perform fuzzy AND operations; (4) Layer 4—output 
term nodes, which defuzzify the fuzzy functions  concluded by 
the rule nodes; and Layer 5—output layer, which presents the 
system output to outside world. 

 

 
 

B. Variable-attribute network structure (VANS) 
Similar to other neuro fuzzy systems, the traditional 

FALCON accepts only data with complete attribute values. 
Any missing attribute value will cause trouble in performing 
Fuzzy AND operation in Layer 3 of FALCON. Further 

propagations can not proceed consequently, and thus the 
system output can not be derived from the network at Layer 5.  

In order to improve this problem, a Variable Attribute 
Network Structure (VANS) is proposed by Yu and Lin [1]. 
VANS adopts a flexible network structure that can adjust to the 
available attribute values in processing every single input 
dataset. Considered the FALCON in Fig. 2, where input 
attribute a is missing. The rule nodes connecting to fuzzy terms 
of attribute a are prohibited from further propagation.  

 

 
 
The main idea of VANS is to ignore the attributes with 

missing values. Thus the network of Fig. 2 degrades to the one 
depicted in Fig 3, where the attribute a (with missing attribute 
value) and its associated fuzzy term nodes are deleted from the 
network. The resulted FALCON contains only two (b and c) 
input attributes. The signal propagation process of the degraded 
network follows the rules of original FALCON. 

 

 
 
VANS is achieved with a special treatment of the missing 

attribute value by substituting them with values higher than 1.0 
after fuzzification operation of Layer 2 in FALCON. The 

Fig. 3. Degraded FALCON for incomplete attribute vlues l ([1])

Fig. 2. Connections of FALCON for incomplete attribute vlues l ([1])

Fig. 1. A generic FALCON model (adapted from [9]) 
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special treatment avoids missing attribute values to influence 
the results of fuzzy AND operation. The missing attributes are 
“invisible” to the network, and thus they are ignored during the 
propagation process. With VANS, a VaFALCON is 
constructed, which is able to process any combination of 
available attribute values in the network learning and fuzzy 
inference algorithms of the traditional FALCON. The function 
of handling variable attribute values provides VaFALCON 
capability for processing missing value problem. 

 

IV.  CASE STUDIES 
This section presents two real world cases of partial 

information decision-making problems in construction 
management. There are four input attributes for the data of both 
cases. Totally, 4 (attributes)×3 (testing datasets) = 12 attribute 
fields are considered in each testing experiment. Two scenarios 
are designed to test the three cases: (1) decision-making with 
91.7% information (one missing attribute value); (2) 
decision-making with 88.3% information (two missing 
attribute values).  In Scenario I, one value is taken away from 
the 12 attribute fields every time. The residual attribute 
information equals to 

%7.91%100)
12
11( =×−

 In Scenario II, two 

values are taken away from the 12 attribute fields every time. 
The residual attribute information equals to %37.83%100)

12
21( =×−

. 

The system estimation accuracy is calculated by Equation (1). 
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In Equation (1), Estimated is the output generated by the 

system, Actual is the actual result observed from real world, 
and Acc. is the percentage accuracy of the estimation. The 
absolute value is taken within the parenthesis to avoid minus 
values. 

A. Case I—Building Construction Cost Estimation 
Building construction cost estimation is a difficult task 

during the early stage of a construction project as most design 
information is not available at that stage. Traditional 
approaches rely on domain experts (experienced cost 
estimators) in performing the conceptual cost estimation. 
However, the domain experts are difficult to find, expensive to 
educate, and likely to leave. An example from Yu [10] is 
selected for case study. In the selected example, 4 attributes 
were identified as attributes among the nearly 30 parameters 
originally collected, including (1) retaining wall type (RWT); 
(2) No. of floors above ground (F); (3) No. of floors under 
ground (SF); (4) total floor area (A). One single output, 
construction cost estimation (TWD), is recorded in the database. 
Totally 25 data are collected from historical building 
construction project by surveying the final project reports 
provided by public owners. 22 data sets are used for learning 
and the rest 3 data are used for testing. The Training sets are 
shown in Table I. The complete testing sets are shown in Table 

II. 
 
Before testing the partial information scenarios, the complete 

testing datasets (see Table II) are tested. The testing result 
recorded is 96.63%. Then, two testing scenarios are applied to 
the three testing datasets shown in Table II. The testing result 
for Scenario I is shown in Table III, where the values in the row 
of “Rank” represent the influential ranking of each attribute on 
the testing accuracy. It is found from Table III that the 
information of “No. of floors under ground”(SF) influences the 
testing accuracy most significantly. The overall average testing 
accuracy for Scenario I is 87.52% in Case I. 

TABLE I 
TRAINING DATASETS OF CASE I 

ID Retaining wall 
type (RWT)

Floor 
(F) 

Sub-floor 
(SF) 

Area (A)  
(m2) 

Total cost (TC) 
(TWD) 

1 3 7 2 2959 43459663

2 3 12 2 7449 164000000

3 3 13 2 15178 255260938

4 2 6 1 918 15769572

5 2 7 1 1502 22722088

6 2 7 1 1721 32171609

7 2 12 1 4518 77150600

8 2 16 2 27866 407150000

9 2 20 3 38255 525000000

10 1 4 1 2630 28500000

11 1 6 1 2958 36154899

12 1 8 2 3855 47714078

13 1 8 1 7316 89872402

14 1 12 2 8331 114884225

15 1 12 2 8351 122814797

16 1 12 1 9396 122923137

17 1 12 2 10810 173313000

18 1 12 1 20993 329966802

19 1 14 2 31513 533289382

20 1 14 2 32955 557683814

21 1 12 1 13989 185164666

22 2 12 1 5560 95530000
RWT: 1= steel rail pile, 2= replace aggregate method, 3= curtain wall 

method. 

TABLE II 
COMPLETE TESTING DATASETS OF CASE I 

ID Retaining wall 
type (RWT)

Floor 
(F) 

Sub-floor 
(SF) 

Area (A)  
(m2) 

Total cost (TC) 
(TWD) 

T.1 3 7 2 3318 46696021

T.2 1 12 1 28059 434390623

T.3 3 6 2 3223 50394716
RWT: 1= steel rail pile, 2= replace aggregate method, 3= curtain wall 

method..
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For Scenario II, combinations of missing values in any two 

attribute fields are tested. The cross testing results of missing 
attribute values in Scenario II are shown in Fig. 4 at the end of 
this paper. The testing results are shown in Table IV. It is found 
that missing values in both “No. of floors above ground (F)” 
and “No. of floors under ground (SF)” influence the testing 
accuracy most significantly. These two attributes are also the 
top two most significant attributes found in Table III. The 
overall testing accuracy for Scenario II is 80.33%. 

By testing with scenario I and II, the most significant 
influential attributes that affecting the accuracy of estimation 
for building construction cost are identified. Moreover, it was 
found that the overall testing accuracy for Scenario I is 87.52% 
and for Scenario II is 80.33%, vs. the 96.63% testing accuracy 
for complete attribute information. 
 

 
 

B. Case II—Building Construction Cost Estimation 
Curtain wall method has been widely adopted in urban 

construction projects in Taiwan. Social costs can be very high 
under inappropriate management practice. Therefore, the 
accurate duration estimation of such works is important for 
effective project planning and management in the crowed and 
congested urban construction sites. An example from Yang [11] 
is selected for case study. In the selected example, totally 27 
historical datasets were collected from major consultant firms 
of Taiwan. Among which 24 are used for training and 3 are 
used for testing. The input attributes identified by Yang are: (1) 
excavation depth (m); (2) quantity of walls; (3) construction 

method; and (4) soil type. Two qualitative attributes are 
transformed into numeric values: (1) construction methods— 1 
means ML method, 2 represents MHL; (2) the soil 
type—Clayey as 1, Sandy-clayey as 2, Sandy as 3, 
Sandy-gravel as 4, Gravel as 5, and Clayey-gravel as 6. The 
Training sets are shown in Table V. The complete testing sets 
are shown in Table VI. 

 

TABLE IV 
TESTING RESULTS FOR TWO MISSING ATTRIBUTE VALUES OF CASE I 

Combination of missing attributes Testing accuracy Rank 

RWT+F 0.7987 4 
RWT+SF 0.7725 2 
RWT+A 0.8607 6 

F+SF 0.7442 1 
F+A 0.8526 5 

SF+A 0.7911 3 

Overall average accuracy 0.8033   

TABLE III 
TESTING RESULTS FOR ONE MISSING ATTRIBUTE VALUE IN CASE I 

Missing attribute 
ID 

RWT F SF A 

T.1 0.9301 0.9047 0.7420 0.9663 

T.2 0.7977 0.7967 0.9871 0.8563 

T.3 0.9321 0.9067 0.7165 0.9663 

Average 0.8866 0.8694 0.8152 0.9296 

Rank 3 2 1 4 

TABLE V 
TRAINING DATASETS OF CASE II 

ID Dig depth 
(DD) (m)

No. of units 
(NU) 

Method 
(M) 

Soil type
(S) 

Duration 
(D) (day)

1 3 7 2 2959 43459663

2 3 12 2 7449 164000000

3 3 13 2 15178 255260938

4 2 6 1 918 15769572

5 2 7 1 1502 22722088

6 2 7 1 1721 32171609

7 2 12 1 4518 77150600

8 2 16 2 27866 407150000

9 2 20 3 38255 525000000

10 1 4 1 2630 28500000

11 1 6 1 2958 36154899

12 1 8 2 3855 47714078

13 1 8 1 7316 89872402

14 1 12 2 8331 114884225

15 1 12 2 8351 122814797

16 1 12 1 9396 122923137

17 1 12 2 10810 173313000

18 1 12 1 20993 329966802

19 1 14 2 31513 533289382

20 1 14 2 32955 557683814

21 1 12 1 13989 185164666

22 2 12 1 5560 95530000
M: 1= ML method, 2= 2 represents MHL. 
S: 1= Clayey, 2= Sandy-clayey, 3= Sandy, 4= Sandy-gravel, 5= Gravel, 

Clayey-gravel. 

TABLE VI 
COMPLETE TESTING DATASETS OF CASE I 

ID Dig depth 
(DD) (m)

No. of 
units 
(NU)

Method 
(M) 

Soil type 
(S) 

Duration  
(D) (day) 

T.1 3 7 2 3318 46696021

T.2 1 12 1 28059 434390623

T.3 3 6 2 3223 50394716
M: 1= ML method, 2= 2 represents MHL. 
S: 1= Clayey, 2= Sandy-clayey, 3= Sandy, 4= Sandy-gravel, 5= Gravel, 

Clayey-gravel. 
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At first, the complete datasets (see Table II) are tested. The 

testing accuracy is 91.84%. Then, two testing scenarios are 
applied to the three datasets shown in Table VI. The testing 
result for Scenario I is shown in Table VII. From the values in 
the row of “Rank”, it is found from that the attribute 
information of “Soil type”(S) influences the testing accuracy 
most significantly. The overall average testing accuracy for 
Scenario I is 87.88% in Case II. 

 

 
The cross testing results of missing attribute values in 

Scenario II are shown in Fig. 5. For Scenario II, the testing 
results are shown in Table VIII. It is found that missing values 
in both “soil type (S)” and “construction method (M)” 
influence the testing accuracy most significantly. These two 
attributes are also the top two ranked most significant attribute 
found in Table III. The overall testing accuracy for Scenario II 
is 86.02%. 
 

 
 

C. Findings from Case Studies 
It can be seen from the results of the testing cases that 

VaFALCON is able to recover knowledge from partial 
information. In order to evaluate the capability of knowledge 
recovery for VaFALCON, consider the knowledge recovery 
ratio (KRR) defined in Equation (1). 

 

%100

%
% (%)

Acc
AccKRR α

α =  (2) 

 
In Equation (2), KRRα% (%) means the knowledge recovery 

ratio (in percentage) for α % attribute information; Accα% is 
system testing accuracy of α % attribute information defined in 
Equation (1); Acc100% is system testing accuracy of complete 
attribute information. 

The testing result of the two case studies show that 
VaFALCON is capable of providing decision-making support 
under partial information environment. It is found that KRR91.7% 
is 90.57% in Case I and 95.68% n Case II; KRR83.3% is 86.03% 
in Case I and 93.67% in Case II. Even though the performance 
of VaFALCON in knowledge recovery of partial attribute 
information is case sensitive (performance is much better in 
Case II than in Case I), the knowledge recovery of the two cases 
in either scenario is no less than the available information.  

The second finding from the two case studies is that the most 
influential attributes for estimation accuracy can be identified 
by system testing with incomplete datasets. In case I, “No. of 
floors above ground (F)” and “No. of floors under ground (SF)” 
are the top two most influential attributes. The combination of 
these two missing attribute values also influences the 
estimation accuracy most significantly in Scenario II. Similarly, 
In case II, “soil type (S)” and “construction method (M)” are 
the top two most influential attributes. The combination of 
these two missing attribute values also influences the 
estimation accuracy most significantly in Scenario II. By 
identifying the most significant attributes for a DSS, the user 
can focus his/her efforts on collecting the most important 
information for decision-making. As a result, the efficiency of 
decision-making can be improved. 
 

V. 5. CONCLUSIONS AND FUTURE WORK 
Decision-making in construction management is usually 

time-constrained. Partial information decision-making is 
commonplace for construction managers/engineers. However, 
the traditional decision support systems (DSSs) require the user 
to provide complete attribute values. This is not realistic in real 
world applications. This research proposes a VaFALCON 
neuro fuzzy system for handling partial attribute information in 
decision-making for construction management. The 
VaFALCON adopts VANS flexible network structure that is 
able to learn and inference with any combination of input 
attributes. As a result, datasets with missing attribute values can 
be utilized as the complete datasets to make the most use of the 
available information. 

From two case studies, it is found that the proposed 
VaFALCON is able to recover 90.57% to 95.68% system 
accuracy from 91.7% attribute information, and recover 
86.03% to 93.67% system accuracy from 83.3% attribute 
information. Moreover, the most influential attributes for 
estimation accuracy can be identified by testing of VaFALCON. 
Therefore, the user can focus his/her efforts on collecting the 
most important information for decision-making. As a result, 
the efficiency of decision-making can be improved. 

TABLE VIII 
TESTING RESULTS FOR TWO MISSING ATTRIBUTE VALUES FOR CASE II 

Combination of missing attributes Testing accuracy Rank 

DD+NU 0.8867  6  
DD+M 0.8797  5  
DD+S 0.8568  4  
NU+M 0.8543  2  
NU+S 0.8545  2  
M+S 0.8294  1  

Overall average accuracy 0.8602   

TABLE VII 
TESTING RESULTS FOR ONE MISSING ATTRIBUTE VALUE IN CASE II 

Missing attribute 
ID 

DD NU M S 

T.1 0.9552 0.9151 0.9124 0.8715 

T.2 0.9011 0.8968 0.9176 0.8449 

T.3 0.8591 0.8451 0.7888 0.8376 

Average 0.9051 0.8857 0.8729 0.8513 

Rank 4 3 2 1 
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Due to time constraint, only two scenarios (91.7% and 
83.3% attribute information) are tested. More experiments on 
other degrees of partial attribute information should be 
performed in future work. Effect of partial information in both 
training datasets and testing datasets should also be researched 
in the future to see the cross impact of missing values. 
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T.1 T.2 T.3 

 RWT F SF A RWT F SF A RWT F SF A 

RWT             

F 0.7706            

SF 0.7365 0.7175           
T.1 

A 0.9301 0.8946 0.7144          

RWT 0.7615 0.7361 0.5734 0.7977         

F 0.7605 0.7351 0.5724 0.7967 0.9069        

SF 0.9509 0.9255 0.7628 0.9871 0.9871 0.9509       
T.2 

A 0.8201 0.7947 0.6320 0.8563 0.7841 0.8860 0.9709      

RWT 0.8959 0.8705 0.7079 0.9321 0.7635 0.7626 0.9529 0.8221     

F 0.8705 0.8451 0.6824 0.9067 0.7381 0.7371 0.9275 0.7967 0.7726    

SF 0.6803 0.6549 0.4922 0.7165 0.5479 0.5469 0.7373 0.6065 0.8153 0.7195   
T.3 

A 0.9301 0.9047 0.7420 0.9663 0.7977 0.7967 0.9871 0.8563 0.9321 0.8966 0.7630  

Fig.4. Cross testing of 83.3% (two missing attributes) information for Case I 
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T.1 T.2 T.3 

 DD NU M S DD NU M S DD NU M S 

DD             

NU 0.9380            

M 0.9545 0.9071           
T.1 

S 0.9134 0.9071 0.8234          

DD 0.9379 0.8978 0.8763 0.8542         

NU 0.9336 0.8935 0.8720 0.8500 0.9255        

M 0.9544 0.9143 0.8928 0.8708 0.9027 0.8970       
T.2 

S 0.8817 0.8417 0.8201 0.7981 0.9255 0.9157 0.9225      

DD 0.8959 0.8558 0.9053 0.8122 0.8418 0.8375 0.8583 0.7856     

NU 0.8819 0.8419 0.8392 0.7983 0.8278 0.8236 0.8444 0.7717 0.8823    

M 0.8256 0.8464 0.7829 0.7420 0.7715 0.7673 0.7881 0.7154 0.8683 0.8008   
T.3 

S 0.8744 0.8804 0.8316 0.7907 0.8203 0.8160 0.8368 0.7641 0.8442 0.9099 0.9017  

 Ave 0.9083 0.8786 0.8493 0.8145 0.8593 0.8429 0.8500 0.7592 0.8649 0.8554 0.9017  

Fig.5. Cross testing of 83.3% (two missing attributes) information for Case II


