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Abstract: The assignment of staff to projects is a regular activity for many contractors, government agencies and consulting 
firms. Whereas the primary objective of the assignment is to maximize the overall profit, issues dealing with manpower 
management must also be incorporated to ensure strong morale and to enhance competitiveness. Such issues include to avoid 
excessive overtime and to balance workloads. The present study develops a particle swarm optimization (PSO) algorithm to 
handle the assignment problem with multiple objectives, which creates difficulty for conventional optimization techniques. 
The proposed algorithm is tested on an application case to illustrate its performance. It has also been compared to LINGO, a 
commercial optimization package. 
Keywords: PSO, Multiobjective optimization, Assignment problem, Manpower management

1. INTRODUCTION 
 
One of the most important management tasks facing the 

construction industry is to assign the working staff to 
incoming projects. This routine task serves as the basis of 
profitability and, if done properly, can greatly enhance 
competitiveness. Yet, the staff-to-project assignment is 
usually done under time pressure. 

To address manpower management issues, the 
real-world staff-to-project assignment involves multiple 
goals, such as (1) maximizing the overall profit, (2) 
minimizing the excessive overtime, and (3) minimizing the 
variation of workloads. The first goal is self explanatory. 
The second serves to balance the workloads of employees 
while the third intends to avoid excessive overtime hours. 
The latter two are considered important because they ensure 
morale and address non-financial motivation [5]. 

The assignment problem with multiple objectives has 
been proved to be NP-complete and even #P-complete [4]. 
That is, neither does polynomial-time algorithm exist nor is 
any deterministic algorithm kown to find the approximate 
answer within a reasonable error bound. To solve such a 
difficult problem in limited time, this study develops a 
particle swarm optimization (PSO) algorithm, supported by 
stochastic and iterative search, to optimize all the objectives 
simultaneously. 

 
2. BACKGROUND 

 
2.1 Mono-objective Assignment Problem 

The original assignment problem is to assign n people to 
n jobs so as to reach some overall level of competence, i.e., 
to minimize or maximize an objective. The implied 
assumption is that each person would be assigned a job and 
each job would utilize exactly one person. For example, if 
the cost of assigning person i to job j is aij, the objective is to 
minimize 

∑
ji

ijij xa
,

 (1)

The binary constraints are 
∑ ∀=
i

ij jx   1  (2)

∑ ∀=
j

ij ix   1  (3)

where the assignment variable xij is 1 if person i is assigned 
to job j and 0 otherwise. 

 
2.2 Solution Procedure 

After its initial appearance in 1950s, the mono-objective 
assignment problem has been tackled by several approaches. 
On one hand, the problem can apparently be regarded as 
binary integer programming because xij can only take the 
value 0 or 1. On the other hand, it has been shown that by 
relaxing the integer assumption, linear programming 
techniques can also lead to the desired result [8]. Although 
both integer and linear programming models can be solved 
by commercial software packages, the models could be 
tediously large since it demands n2 variables. 

It is more convenient to use a specialized algorithm. One 
of the famous approaches is the Hungarian algorithm [7]. 
Also of help is the minimum cost flow algorithm [1], which 
sends flow from a set of supply nodes through the arcs of a 
network, to a set of demand nodes, at minimum total cost. 
Each arc in the network denotes an assignment between staff 
and projects.  

 
2.1 Multi-objective Assignment Problem 

Despite the success in achieving the single goal for the 
assignment problem, recent attentions have been shifted to 
optimizing multiple objectives simultaneously. Whereas the 
primary objective is to minimize costs or maximize profits, 
managers are often concerned with unbalanced workloads 
and excessive overtime. The former raises conflicts between 
heavily and lightly loaded teams [9] and the latter creates 
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stress and fatigue, and ultimately causes poor-quality 
products. 

To deal with multiple objectives, several methods are at 
hand. The most intuitive one is taking the weighted sum of 
all the objectives and optimizing the weighted sum instead. 
The weighted sum approach, however, is not appropriate 
here because the objectives of the assignment problem are 
measured in different units and their relative weights are 
often difficult to assess.  

Another approach is goal programming, which intends 
to minimize the weighted sum of the absolute deviations 
between pre-specified goals and objective values. Again, 
this approach requires decision makers to devise goals for 
objective values and set a proper weight for every objective 
before the optimization. The tasks rely on a priori 
articulation of preference information, which may not be 
accessible to decision makers. 

The third approach is to optimize the most relevant 
objective, and considering other objectives as constraints 
bound by some allowable levels, ε. The major shortcoming 
of the ε-constraint approach is that it has to tediously repeat 
the optimization procedure for different bounds of ε, if a full 
description of optimal solutions is needed. 

The optimality of solutions in multiobjective 
optimization is based on a tradeoff philosophy. That is, we 
are really trying to find good compromises (the “trade-off 
surface” in the search space) rather than a single solution. 
The tradeoff surface is composed of non-dominated, also 
known as Pareto optimal, solutions that are better than other 
solutions at some objectives while being at least as good as 
others for the other objectives. Having the tradeoff surface, 
as opposed to a single solution, offers decision makers the 
most flexibility for determining the compromised 
assignment alternative after a thorough evaluation of 
existing solutions. Thus, the ultimate aim of the present 
study is to approximate the tradeoff surface for the 
multiobjective assignment problem. Detailed definitions of 
multi-objective dominance can be found in [3]. 

 
3. PROBLEM STATEMENT 

 
The targeted problem is to assign n staff teams to m 

incoming projects over a planning time horizon. Note that 
the numbers of teams and projects need not be equal. Hence, 
in addition to assigning teams to projects, the solution would 
also help determine which project should be accepted. 

Five sets of entries are needed. The main entry is the 
estimated man-hours for team i to perform project j, denoted 
by tij. For the same project, the required man-hours may 
vary. This is to accommodate an allowance for added 
productivity when a team is familiar with a particular 
project. Thus the optimal assignment plan will encourage 
teams to perform their specialty, using less time. The vector 
rj denotes the revenue of project j. Three vectors, ci, si, and gi 
represent the hourly cost, the availability (upper limit of 
working hours), and the regular work time for team i, 
respectively. The availability differs because some of the 
teams are concurrently working on other in-house projects, 

which shall not be reassigned to avoid disruption. Working 
hours beyond the regular work time are overtime and would 
incur a higher cost, e.g., 1.5 times the regular hourly cost. By 
definition, the regular work time is not greater than the 
availability. 

As mentioned previously, the decision variables are the 
binary assignment choices between team i and project j 

1or  0=ijx  (4) 
The present model consists of three objectives, whose 

individual reasoning and formulation are given below.  
The first objective is to maximize the profit, which is 

revenue R minus the regular and overtime costs, Cregu and 
Cover. 

overregu CCRP −−=  (5) 
The revenue can be expressed as 

∑ ∑
∀ ∀

=
j i

ijijj xtrR )(  (6) 

where ∑
∀i

ijij xt  stands for the actual working hours spent on 

project j; jr  is the revenue of project j. The regular-time 
cost is 

∑ ∑
∀ ∀

=
i j

iijijiregu gxtcC )],[min(  (7) 

where ∑
∀j

ijij xt  denotes the actual working hours of team i, 

which is the minimum between the actual working hours and 
the regular time gi. It is then multiplied by the regular hourly 
cost ic  to obtain the regular-time cost. The overtime cost is 

∑ ∑
∀ ∀

−=
i j

iijijiover gxtcC )],0[max(*  (8)

where *
ic  is the hourly rate of overtime pay. The element in 

square brackets calculates the overtime hours by deducting 
the regular work time from the actual working hours, if the 
latter is greater. 

The second objective is to minimize the variation of 
workloads. For each team, the workload is quantified by a 
standardized utilization rate: dividing the team’s actual 
working hours by the regular work time: 

i

j
ijij

i g

xt

u
∑
∀=

)(

 (9) 

The utilization rate is less than 100% when the assigned 
projects can be completed within the regular time; it is 
greater than 100% at the presence of overtime. On the 
foundation of Eq. (9), the variation of workloads is defined 
to be the standard deviation of utilization rates: 

2)(1 uu
n i

i −= ∑
∀

σ  (10)

where u  is the average utilization rate 

∑
∀

=
i

iu
n

u 1  (11)
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The third objective is to minimize excessive overtime, 
which is the maximal amount among all teams’ overtime 
hours. 

)],0[max(max ∑
∀∀

−=
j

iijij
i

gxth  (12)

 
4. PSO ALGORITHM 

 
4.1 Concepts 

The original PSO scheme was designed to mimic the 
cooperation within a biological population, such as a group 
of birds or a swarm of insects [6]. Within the population, 
multi-dimensional particles, each a possible solution, are 
flown through the problem space, in search of optima. Each 
particle has its own velocity, which is determined by (1) the 
local best: the memory of the best solution it has obtained 
thus far and (2) the global best: the best solution found by the 
entire population. It has been shown that PSO is able to 
converge to global optima fast without being trapped in local 
optima, especially when the problem space is complex and 
irregular.  

The capability of PSO algorithms has been testified by a 
wide variety of recent applications, such as biomedical 
image registration [11], neural network training [2], and 
resource-constrained scheduling [14]. However, the original 
PSO scheme focuses on only one objective and hence 
requires further enhancements in the context of 
multiobjective optimization. In what follows, we introduce 
the improved PSO algorithm 

 
4.2 Proposed Algorithm 

In the proposed PSO algorithm, the position of the kth 
particle is m-dimensional (m equals the number of projects) 
and expressed in a vector form: ]...,,...,,[ 21

k
m

k
d

kkk yyyy=Y , 

where all ∈k
dy [0,1]. The component in dimension d of the 

position determines which team is assigned to project d by a 
mapping process. The process is virtually mapping a 
continuous variable k

dy  to a binary variable ijx  as 
graphically depicted in Fig. 1 where m equals 3. 

 

kY

 
 

Fig. 1. Mapping process 
 

The proposed algorithm iteratively changes the particle 
positions as follows 

)1()()1( ++=+ tvtyty k
d

k
d

k
d  (13)

where )(tyk
d  is the component in dimension d of particle k 

at iteration t; 1( +tvk
d ) is the velocity at iteration t+1, which 

is determined by 

))(())((

)()1(

2211 tyGbestrctyLbestrc

twvtv
k
dd

k
dd

k
d

k
d

−+−

+=+
 (14)

where w  is the inertia weight; )(tvk
d  is the velocity in the 

previous iteration; 1c  and 2c  are learning constants; 1r  and 

2r  are random factors in the [0,1] interval; dLbest  is the 
component in dimension d of the local best; dGbest  is the 
component in dimension d of the global best. While the 
swarm size, w , 1c , and 2c  are specifiable algorithm 
parameters, 1r  and 2r  provide the imperative randomness 
for finding better solutions along the direction guided 
toward the local and global best. 

The algorithm parameters in Eq. (14) should be 
fine-tuned to ensure performance. However, previous 
experiments have suggested the following configurations. 
The swarm usually contains 10 to 50 particles. The inertia 
weight w  is used to control the impact of the previous 
history of velocities on the current velocity, thus to influence 
the trade-off between global exploration and local 
exploitation abilities of the particles. It is therefore better to 
initially start at a large value (around 1), in order to promote 
global exploration, and gradually decrease it (no less than 0) 
to get more refined solutions [10]. Both learning constants 

1c  and 2c  range from 1 to 4, whereas relative importance 
can be given to stress the influence of one’s own memory 
(cognition learning) or that of the entire population (social 
learning). 

The velocity is constrained within a specified bound to 
avoid vicious oscillation 

maxmax )1( if   
)1(

)1(
)1( vtvv

tv

tv
tv k

dk
d

k
dk

d >+
+

+
=+  (15)

where the velocity bound maxv  is often smaller than the 
domain of the search space. 

Besides the velocity bound, the particle positions are 
constrained within the feasible range [0,1]. This is 
accomplished by a new bouncing routine illustrated in Fig. 
2. Once a particle is moved beyond the feasible range, it will 
be automatically sent back with a distance equal to that 
beyond the limit. The bouncing routine is considered 
superior to the conventional absorbing routine, i.e., the 
particle is kept at the boundary as its velocity is absorbed 
(shown as the gray circle), because it provides more 
exploration capability. 
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Fig. 2. Bouncing routine 
 

A key requirement for locating the non-dominated 
solutions is to preserve solution diversity during 
optimization. To do so, we maintain an elite archive and 
alter the definition of the global best in the original PSO 
scheme. As iterations progress, the global best is selected 
dynamically from the elite archive that stores all the 
non-dominated solutions. The rule of selection gives 
preference to the non-dominated solutions that dominates 
the “fewest” particles in the current iteration. The underlying 
concept is to preserve diversity by promoting movements to 
the extremes and unrepresented areas. 

The local best is the best position ever achieved by the 
particle. Every particle compares its current position to the 
previous local best and chooses the non-dominated one as 
the new local best. 

The proposed PSO algorithm is not sensible to the scales 
of the objectives because it by no means calculates the 
distances between solutions. Thus its performance is 
independent from the choice of scales. For instance, 
converting the profit from local currencies to US dollars 
does not affect the solutions being found. This is of 
particular importance to international firms. 

The proposed PSO algorithm is composed of the 
following steps 

1. Randomly initialize the positions for all the 
particles. 

2. Initialize the velocity of each particle. 
3. Map the particle positions to assignment choices. 
4. Evaluate the four objective values of the assignment 

choices according to Eqs. (5), (10), and (12). 
5. Store the positions representing non-dominated 

solutions in the elite archive. 
6. Initialize the memory of each particle. 
7. WHILE the maximal number of iterations has not 

yet been reached 
 For each particle DO 

(a) Compute the velocity as described in Eq. 
(14). 

(b) Constrain the velocity so that it does not 
exceed the bound by Eq. (15). 

(c) If the velocity would cause infeasibility, 
adjust it using the bouncing routine. 

(d) Compute the new position by adding the 
velocity to the previous position using Eq. 
(13). 

(e) Evaluate the objective values of the current 
position. 

(f) Compare the new position with members in 
the archive. 

(g) Update the elite archive by inserting all the 
currently non-dominated positions and 
eliminate any dominated locations from the 
archive. 

(h) When the new position dominates the local 
best, replace the local best. 

(i) Locate the archive member that dominates the 
fewest particles in this iteration as the global 
best. 

(j) Increase the loop counter. 
8. Return the archive as the non-dominated solution 

set. 
 

5. APPLICATION 
 
An actual case was used to demonstrate the application 

of the proposed algorithm. This case is adopted from a 
previous study of an environmental consulting engineering 
firm [13]. Six engineering teams are available to be assigned 
to fifteen projects. Table 2 (at the end of this article) 
enumerates input data in the following sets:  

(1) tij: estimated man-hours for team i to perform project 
j; 

(2) rj: revenue for project j; 
(4) ci: hourly cost of team i; 
(5) si: availability of team i; 
(6) gi: regular work time for team i. 

The overtime hourly cost is 1.5 times of the regular hourly 
cost. 

There are three objectives being optimized: (1) to 
maximize the overall profit, (2) to minimize the maximal 
overtime, and (3) to minimize the variation of workloads. 
Detailed formulas of these objectives can be found in 
Section 3. 

The multiobjective assignment problem is solved using 
the following algorithm parameters:  

(1) Swarm size is 20;  
(2) Inertia weight starts at 1.0 and linearly decreases to 

0.4;  
(3) Learning constants are 1 and 2 (social learning is 

twice more important than cognition learning);  
(4) Velocity bound is 0.5. 
A pilot study is conducted to set the iteration number. In 

summary, the maximal iteration number is set to 10,000 as it 
yields the most non-dominated solutions per CPU time. This 
criterion is one of the performance metrics in multiobjective 
optimization [15]. 

A set of non-dominated solutions are found within 15 
minutes at a Pentium IV 2.4 GHz machine. Fig. 3 plots the 
non-dominated solutions, which reflect a three-dimensional 
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tradeoff between profit, overtime, and variation of 
workloads.  
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Fig. 3. Non-dominated solutions 
 

Due to limited space, Table 3 lists only the first 10 
solutions, sorted by profit. A close observation confirms that 
a higher profit comes at the expense of more excessive 
overtime or a greater variation of workloads. 

 
Table 3. Non-dominated solutions (partial list) 

 

Profit ($) Maximal 
overtime (hr) 

SD of utilization 
rate (%) 

$244,915 785  56.71  
$243,616 383  49.79  
$241,973 185  36.39  
$239,411 325  35.47  
$236,633 190  36.15  
$234,973 0  40.90  
$234,841 263  23.04  
$232,518 138  39.46  
$229,422 50  27.25  
$225,850 0  39.10  

 
The non-dominated solution set illustrates the advantage 

of the proposed algorithm: giving decision makers a set of 
compromised solutions to choose from when time is limited. 
For instance, whereas the second highest profit (marked in 
bold) is about $1300 less, it can decrease the maximal 
overtime from 785 to 383 hours and also lead to a more 
balanced workload. It is therefore chosen to be the optimal 
solution after all. 

To validate the effectiveness of the proposed algorithm, 
it is compared to LINGO 8.0, a powerful optimization 
package [12]. Since LINGO cannot handle multiple 
objectives, we used it to maximize the profit under the 
following two constraints: (1) the maximal overtime is less 
than 383 hours, and (2) the standard deviation of utilization 
rates is less than 49.79%. LINGO took 6 million iterations, 
using the branch-and-bound solver, to find the local optimal 

solution of $241,751, which is apparently dominated by our 
solution: $243,616. 

In addition to the effectives, the proposed algorithm is 
notable for its efficiency. For the application case, a full 
permutation would require O(1012) trails. The huge number 
of trials is obviously expensive and almost infeasible in 
computation. In contrast, the proposed algorithm tries only 
O(105) possible solutions (20 particles for 10,000 
iterations). In a nutshell, the proposed algorithm searches a 
very small portion of the solution space (in the order of 10-7) 
and yet, finds very competitive non-dominated solutions. 

 
6. CLOSING REMARKS 

The present study develops a new PSO algorithm to 
facilitate the multi-objective staff-to-project assignment, 
which cannot be solved in polynomial time using 
conventional optimization techniques. Thus, the aim of the 
proposed algorithm is to locate good non-dominated 
solutions under time pressure. To optimize multiple 
objectives simultaneously, the proposed algorithm 
maintains an elite archive and uses the archive members to 
dynamically lead the particle swarm in searching for more 
and better non-dominated solutions. The performance of the 
proposed algorithm has been validated through an 
application case. It has been shown that the proposed 
algorithm can find very competitive solutions with 
considerable efficiency. 
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Table 2. Input data 

 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
1 810 877 930 545 430 515 423 720 410 515 410 480 250 345 345 56.4 2175 1450
2 810 965 930 600 390 515 465 720 410 468 410 480 275 345 345 38.0 2790 1860
3 810 965 930 600 430 515 465 720 373 515 410 480 275 345 345 37.0 2790 1860
4 810 965 930 600 430 515 465 720 410 515 410 480 275 345 345 34.0 2790 1860
5 810 965 930 600 430 515 465 720 373 515 410 480 275 345 345 51.6 1245 830
6 810 965 930 600 430 515 465 655 410 515 410 480 275 314 345 42.4 930 620

61.2 65.2 35.2 36.8 34.2 35.8 39.2 34.8 35.4 42.6 34.2 25.0 23.0 36.8 33.8

s i  (hr) g i  (hr)

Te
am

r j

($1000)

Project c i  ($)
ijt
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