
MULTIOBJECTIVE PSO ALGORITHM IN PROJECT STAFF
MANAGEMENT

I-Tung Yang

Dept. of Civil Engineering
Tamkang University

151 Yingchuan Road, Tamsui, Taipei County, Taiwan 251
ityang@mail.tku.edu.tw

Abstract: The assignment of staff to projects is a regular activity for many contractors, government agencies and consulting
firms. Whereas the primary objective of the assignment is to maximize the overall profit, issues dealing with manpower
management must also be incorporated to ensure strong morale and to enhance competitiveness. Such issues include to avoid
excessive overtime and to balance workloads. The present study develops a particle swarm optimization (PSO) algorithm to
handle the assignment problem with multiple objectives, which creates difficulty for conventional optimization techniques.
The proposed algorithm is tested on an application case to illustrate its performance. It has also been compared to LINGO, a
commercial optimization package.
Keywords: PSO, Multiobjective optimization, Assignment problem, Manpower management

1. INTRODUCTION

One of the most important management tasks facing the

construction industry is to assign the working staff to
incoming projects. This routine task serves as the basis of
profitability and, if done properly, can greatly enhance
competitiveness. Yet, the staff-to-project assignment is
usually done under time pressure.

To address manpower management issues, the
real-world staff-to-project assignment involves multiple
goals, such as (1) maximizing the overall profit, (2)
minimizing the excessive overtime, and (3) minimizing the
variation of workloads. The first goal is self explanatory.
The second serves to balance the workloads of employees
while the third intends to avoid excessive overtime hours.
The latter two are considered important because they ensure
morale and address non-financial motivation [5].

The assignment problem with multiple objectives has
been proved to be NP-complete and even #P-complete [4].
That is, neither does polynomial-time algorithm exist nor is
any deterministic algorithm kown to find the approximate
answer within a reasonable error bound. To solve such a
difficult problem in limited time, this study develops a
particle swarm optimization (PSO) algorithm, supported by
stochastic and iterative search, to optimize all the objectives
simultaneously.

2. BACKGROUND

2.1 Mono-objective Assignment Problem

The original assignment problem is to assign n people to
n jobs so as to reach some overall level of competence, i.e.,
to minimize or maximize an objective. The implied
assumption is that each person would be assigned a job and
each job would utilize exactly one person. For example, if
the cost of assigning person i to job j is aij, the objective is to
minimize

∑
ji

ijij xa
,

 (1)

The binary constraints are
∑ ∀=
i

ij jx 1 (2)

∑ ∀=
j

ij ix 1 (3)

where the assignment variable xij is 1 if person i is assigned
to job j and 0 otherwise.

2.2 Solution Procedure

After its initial appearance in 1950s, the mono-objective
assignment problem has been tackled by several approaches.
On one hand, the problem can apparently be regarded as
binary integer programming because xij can only take the
value 0 or 1. On the other hand, it has been shown that by
relaxing the integer assumption, linear programming
techniques can also lead to the desired result [8]. Although
both integer and linear programming models can be solved
by commercial software packages, the models could be
tediously large since it demands n2 variables.

It is more convenient to use a specialized algorithm. One
of the famous approaches is the Hungarian algorithm [7].
Also of help is the minimum cost flow algorithm [1], which
sends flow from a set of supply nodes through the arcs of a
network, to a set of demand nodes, at minimum total cost.
Each arc in the network denotes an assignment between staff
and projects.

2.1 Multi-objective Assignment Problem

Despite the success in achieving the single goal for the
assignment problem, recent attentions have been shifted to
optimizing multiple objectives simultaneously. Whereas the
primary objective is to minimize costs or maximize profits,
managers are often concerned with unbalanced workloads
and excessive overtime. The former raises conflicts between
heavily and lightly loaded teams [9] and the latter creates

-890-

ISARC2006

stress and fatigue, and ultimately causes poor-quality
products.

To deal with multiple objectives, several methods are at
hand. The most intuitive one is taking the weighted sum of
all the objectives and optimizing the weighted sum instead.
The weighted sum approach, however, is not appropriate
here because the objectives of the assignment problem are
measured in different units and their relative weights are
often difficult to assess.

Another approach is goal programming, which intends
to minimize the weighted sum of the absolute deviations
between pre-specified goals and objective values. Again,
this approach requires decision makers to devise goals for
objective values and set a proper weight for every objective
before the optimization. The tasks rely on a priori
articulation of preference information, which may not be
accessible to decision makers.

The third approach is to optimize the most relevant
objective, and considering other objectives as constraints
bound by some allowable levels, ε. The major shortcoming
of the ε-constraint approach is that it has to tediously repeat
the optimization procedure for different bounds of ε, if a full
description of optimal solutions is needed.

The optimality of solutions in multiobjective
optimization is based on a tradeoff philosophy. That is, we
are really trying to find good compromises (the “trade-off
surface” in the search space) rather than a single solution.
The tradeoff surface is composed of non-dominated, also
known as Pareto optimal, solutions that are better than other
solutions at some objectives while being at least as good as
others for the other objectives. Having the tradeoff surface,
as opposed to a single solution, offers decision makers the
most flexibility for determining the compromised
assignment alternative after a thorough evaluation of
existing solutions. Thus, the ultimate aim of the present
study is to approximate the tradeoff surface for the
multiobjective assignment problem. Detailed definitions of
multi-objective dominance can be found in [3].

3. PROBLEM STATEMENT

The targeted problem is to assign n staff teams to m

incoming projects over a planning time horizon. Note that
the numbers of teams and projects need not be equal. Hence,
in addition to assigning teams to projects, the solution would
also help determine which project should be accepted.

Five sets of entries are needed. The main entry is the
estimated man-hours for team i to perform project j, denoted
by tij. For the same project, the required man-hours may
vary. This is to accommodate an allowance for added
productivity when a team is familiar with a particular
project. Thus the optimal assignment plan will encourage
teams to perform their specialty, using less time. The vector
rj denotes the revenue of project j. Three vectors, ci, si, and gi
represent the hourly cost, the availability (upper limit of
working hours), and the regular work time for team i,
respectively. The availability differs because some of the
teams are concurrently working on other in-house projects,

which shall not be reassigned to avoid disruption. Working
hours beyond the regular work time are overtime and would
incur a higher cost, e.g., 1.5 times the regular hourly cost. By
definition, the regular work time is not greater than the
availability.

As mentioned previously, the decision variables are the
binary assignment choices between team i and project j

1or 0=ijx (4)
The present model consists of three objectives, whose

individual reasoning and formulation are given below.
The first objective is to maximize the profit, which is

revenue R minus the regular and overtime costs, Cregu and
Cover.

overregu CCRP −−= (5)
The revenue can be expressed as

∑ ∑
∀ ∀

=
j i

ijijj xtrR)((6)

where ∑
∀i

ijij xt stands for the actual working hours spent on

project j; jr is the revenue of project j. The regular-time
cost is

∑ ∑
∀ ∀

=
i j

iijijiregu gxtcC)],[min((7)

where ∑
∀j

ijij xt denotes the actual working hours of team i,

which is the minimum between the actual working hours and
the regular time gi. It is then multiplied by the regular hourly
cost ic to obtain the regular-time cost. The overtime cost is

∑ ∑
∀ ∀

−=
i j

iijijiover gxtcC)],0[max(* (8)

where *
ic is the hourly rate of overtime pay. The element in

square brackets calculates the overtime hours by deducting
the regular work time from the actual working hours, if the
latter is greater.

The second objective is to minimize the variation of
workloads. For each team, the workload is quantified by a
standardized utilization rate: dividing the team’s actual
working hours by the regular work time:

i

j
ijij

i g

xt

u
∑
∀=

)(

 (9)

The utilization rate is less than 100% when the assigned
projects can be completed within the regular time; it is
greater than 100% at the presence of overtime. On the
foundation of Eq. (9), the variation of workloads is defined
to be the standard deviation of utilization rates:

2)(1 uu
n i

i −= ∑
∀

σ (10)

where u is the average utilization rate

∑
∀

=
i

iu
n

u 1 (11)

-891-

ISARC2006

The third objective is to minimize excessive overtime,
which is the maximal amount among all teams’ overtime
hours.

)],0[max(max ∑
∀∀

−=
j

iijij
i

gxth (12)

4. PSO ALGORITHM

4.1 Concepts

The original PSO scheme was designed to mimic the
cooperation within a biological population, such as a group
of birds or a swarm of insects [6]. Within the population,
multi-dimensional particles, each a possible solution, are
flown through the problem space, in search of optima. Each
particle has its own velocity, which is determined by (1) the
local best: the memory of the best solution it has obtained
thus far and (2) the global best: the best solution found by the
entire population. It has been shown that PSO is able to
converge to global optima fast without being trapped in local
optima, especially when the problem space is complex and
irregular.

The capability of PSO algorithms has been testified by a
wide variety of recent applications, such as biomedical
image registration [11], neural network training [2], and
resource-constrained scheduling [14]. However, the original
PSO scheme focuses on only one objective and hence
requires further enhancements in the context of
multiobjective optimization. In what follows, we introduce
the improved PSO algorithm

4.2 Proposed Algorithm

In the proposed PSO algorithm, the position of the kth
particle is m-dimensional (m equals the number of projects)
and expressed in a vector form:]...,,...,,[21

k
m

k
d

kkk yyyy=Y ,

where all ∈k
dy [0,1]. The component in dimension d of the

position determines which team is assigned to project d by a
mapping process. The process is virtually mapping a
continuous variable k

dy to a binary variable ijx as
graphically depicted in Fig. 1 where m equals 3.

kY

Fig. 1. Mapping process

The proposed algorithm iteratively changes the particle
positions as follows

)1()()1(++=+ tvtyty k
d

k
d

k
d (13)

where)(tyk
d is the component in dimension d of particle k

at iteration t; 1(+tvk
d) is the velocity at iteration t+1, which

is determined by

))(())((

)()1(

2211 tyGbestrctyLbestrc

twvtv
k
dd

k
dd

k
d

k
d

−+−

+=+
 (14)

where w is the inertia weight;)(tvk
d is the velocity in the

previous iteration; 1c and 2c are learning constants; 1r and

2r are random factors in the [0,1] interval; dLbest is the
component in dimension d of the local best; dGbest is the
component in dimension d of the global best. While the
swarm size, w , 1c , and 2c are specifiable algorithm
parameters, 1r and 2r provide the imperative randomness
for finding better solutions along the direction guided
toward the local and global best.

The algorithm parameters in Eq. (14) should be
fine-tuned to ensure performance. However, previous
experiments have suggested the following configurations.
The swarm usually contains 10 to 50 particles. The inertia
weight w is used to control the impact of the previous
history of velocities on the current velocity, thus to influence
the trade-off between global exploration and local
exploitation abilities of the particles. It is therefore better to
initially start at a large value (around 1), in order to promote
global exploration, and gradually decrease it (no less than 0)
to get more refined solutions [10]. Both learning constants

1c and 2c range from 1 to 4, whereas relative importance
can be given to stress the influence of one’s own memory
(cognition learning) or that of the entire population (social
learning).

The velocity is constrained within a specified bound to
avoid vicious oscillation

maxmax)1(if
)1(

)1(
)1(vtvv

tv

tv
tv k

dk
d

k
dk

d >+
+

+
=+ (15)

where the velocity bound maxv is often smaller than the
domain of the search space.

Besides the velocity bound, the particle positions are
constrained within the feasible range [0,1]. This is
accomplished by a new bouncing routine illustrated in Fig.
2. Once a particle is moved beyond the feasible range, it will
be automatically sent back with a distance equal to that
beyond the limit. The bouncing routine is considered
superior to the conventional absorbing routine, i.e., the
particle is kept at the boundary as its velocity is absorbed
(shown as the gray circle), because it provides more
exploration capability.

-892-

ISARC2006

)original(kY

)new(kY

Fig. 2. Bouncing routine

A key requirement for locating the non-dominated
solutions is to preserve solution diversity during
optimization. To do so, we maintain an elite archive and
alter the definition of the global best in the original PSO
scheme. As iterations progress, the global best is selected
dynamically from the elite archive that stores all the
non-dominated solutions. The rule of selection gives
preference to the non-dominated solutions that dominates
the “fewest” particles in the current iteration. The underlying
concept is to preserve diversity by promoting movements to
the extremes and unrepresented areas.

The local best is the best position ever achieved by the
particle. Every particle compares its current position to the
previous local best and chooses the non-dominated one as
the new local best.

The proposed PSO algorithm is not sensible to the scales
of the objectives because it by no means calculates the
distances between solutions. Thus its performance is
independent from the choice of scales. For instance,
converting the profit from local currencies to US dollars
does not affect the solutions being found. This is of
particular importance to international firms.

The proposed PSO algorithm is composed of the
following steps

1. Randomly initialize the positions for all the
particles.

2. Initialize the velocity of each particle.
3. Map the particle positions to assignment choices.
4. Evaluate the four objective values of the assignment

choices according to Eqs. (5), (10), and (12).
5. Store the positions representing non-dominated

solutions in the elite archive.
6. Initialize the memory of each particle.
7. WHILE the maximal number of iterations has not

yet been reached
 For each particle DO

(a) Compute the velocity as described in Eq.
(14).

(b) Constrain the velocity so that it does not
exceed the bound by Eq. (15).

(c) If the velocity would cause infeasibility,
adjust it using the bouncing routine.

(d) Compute the new position by adding the
velocity to the previous position using Eq.
(13).

(e) Evaluate the objective values of the current
position.

(f) Compare the new position with members in
the archive.

(g) Update the elite archive by inserting all the
currently non-dominated positions and
eliminate any dominated locations from the
archive.

(h) When the new position dominates the local
best, replace the local best.

(i) Locate the archive member that dominates the
fewest particles in this iteration as the global
best.

(j) Increase the loop counter.
8. Return the archive as the non-dominated solution

set.

5. APPLICATION

An actual case was used to demonstrate the application

of the proposed algorithm. This case is adopted from a
previous study of an environmental consulting engineering
firm [13]. Six engineering teams are available to be assigned
to fifteen projects. Table 2 (at the end of this article)
enumerates input data in the following sets:

(1) tij: estimated man-hours for team i to perform project
j;

(2) rj: revenue for project j;
(4) ci: hourly cost of team i;
(5) si: availability of team i;
(6) gi: regular work time for team i.

The overtime hourly cost is 1.5 times of the regular hourly
cost.

There are three objectives being optimized: (1) to
maximize the overall profit, (2) to minimize the maximal
overtime, and (3) to minimize the variation of workloads.
Detailed formulas of these objectives can be found in
Section 3.

The multiobjective assignment problem is solved using
the following algorithm parameters:

(1) Swarm size is 20;
(2) Inertia weight starts at 1.0 and linearly decreases to

0.4;
(3) Learning constants are 1 and 2 (social learning is

twice more important than cognition learning);
(4) Velocity bound is 0.5.
A pilot study is conducted to set the iteration number. In

summary, the maximal iteration number is set to 10,000 as it
yields the most non-dominated solutions per CPU time. This
criterion is one of the performance metrics in multiobjective
optimization [15].

A set of non-dominated solutions are found within 15
minutes at a Pentium IV 2.4 GHz machine. Fig. 3 plots the
non-dominated solutions, which reflect a three-dimensional

-893-

ISARC2006

tradeoff between profit, overtime, and variation of
workloads.

10
20

30
40

50

0

200

400

600

1.4

1.6

1.8

2

2.2

2.4

x 105

STD of utilization rate (%)Maximal overtime (hr)

P
ro

fit
 ($

)

Fig. 3. Non-dominated solutions

Due to limited space, Table 3 lists only the first 10
solutions, sorted by profit. A close observation confirms that
a higher profit comes at the expense of more excessive
overtime or a greater variation of workloads.

Table 3. Non-dominated solutions (partial list)

Profit ($) Maximal
overtime (hr)

SD of utilization
rate (%)

$244,915 785 56.71
$243,616 383 49.79
$241,973 185 36.39
$239,411 325 35.47
$236,633 190 36.15
$234,973 0 40.90
$234,841 263 23.04
$232,518 138 39.46
$229,422 50 27.25
$225,850 0 39.10

The non-dominated solution set illustrates the advantage

of the proposed algorithm: giving decision makers a set of
compromised solutions to choose from when time is limited.
For instance, whereas the second highest profit (marked in
bold) is about $1300 less, it can decrease the maximal
overtime from 785 to 383 hours and also lead to a more
balanced workload. It is therefore chosen to be the optimal
solution after all.

To validate the effectiveness of the proposed algorithm,
it is compared to LINGO 8.0, a powerful optimization
package [12]. Since LINGO cannot handle multiple
objectives, we used it to maximize the profit under the
following two constraints: (1) the maximal overtime is less
than 383 hours, and (2) the standard deviation of utilization
rates is less than 49.79%. LINGO took 6 million iterations,
using the branch-and-bound solver, to find the local optimal

solution of $241,751, which is apparently dominated by our
solution: $243,616.

In addition to the effectives, the proposed algorithm is
notable for its efficiency. For the application case, a full
permutation would require O(1012) trails. The huge number
of trials is obviously expensive and almost infeasible in
computation. In contrast, the proposed algorithm tries only
O(105) possible solutions (20 particles for 10,000
iterations). In a nutshell, the proposed algorithm searches a
very small portion of the solution space (in the order of 10-7)
and yet, finds very competitive non-dominated solutions.

6. CLOSING REMARKS

The present study develops a new PSO algorithm to
facilitate the multi-objective staff-to-project assignment,
which cannot be solved in polynomial time using
conventional optimization techniques. Thus, the aim of the
proposed algorithm is to locate good non-dominated
solutions under time pressure. To optimize multiple
objectives simultaneously, the proposed algorithm
maintains an elite archive and uses the archive members to
dynamically lead the particle swarm in searching for more
and better non-dominated solutions. The performance of the
proposed algorithm has been validated through an
application case. It has been shown that the proposed
algorithm can find very competitive solutions with
considerable efficiency.

REFERENCES
[1] Ahuja, B.K., Magnanti, T.L., & Orlin, J.B. (1993).

Network flows: theory, algorithms, and applications,
Prentice-Hall, Englewood Cliffs, NJ, 470-472.

[2] Chatterjee, A., Pulasinghe, K., Watanabe, K., & Izumi,
K. (2005). “A particle-swarm-optimized fuzzy-neural
network for voice-controlled robot systems.” IEEE
Transactions on Industrial Electronics, 52(6),
1478-1489.

[3] Coello Coello, C.A., Veldhuizen, D.A., & Lamont,
G.B. (2002). Evolutionary algorithms for solving
multi-objective problems, Kluwer Academic
Publishers, NY.

[4] Ehrgott, M. (2005). Multicriteria optimization, 2nd
edition, Springer, New York, 253-267.

[5] Hecker, P. (1996). “Human resources strategies for
successful consulting engineering firms.” Journal of
Management in Engineering, 12(5), 32-36.

[6] Kennedy J., Eberhart R.C., & Shi Y. (2001). Swarm
intelligence, Morgan Kaufmann Publishers, San
Francisco, CA.

[7] Kuhn, H.W. (1955). “The Hungarian method for the
assignment problem.” Naval research Logistics
Quarterly, 2, 83-97.

[8] Luenberger, D.G. (1984). Linear and nonlinear
programming, 2nd edition, Addison-Wesley, Reading,
MA, 133-134.

[9] Molleman, E. (2005). “The multilevel nature of
team-based work research.” Team Performance
Management, 11(3), 113-124.

-894-

ISARC2006

[10] Shi, Y. & Eberhart, R. (1998). “Parameter selection in
particle swarm optimization.” Proceedings of the
Seventh Annual Conf. on Evolutionary Programming,
591-601.

[11] Wachowiak, M. P., Smolikova, R., Zheng, Y., Zurada,
J. M., & Elmaghraby, A. S. (2004). "An approach to
multimodal biomedical image registration utilizing
particle swarm optimization.” IEEE Transactions on
Evolutionary Computation, 8(3), pp. 289-301.

[12] Winston, W.L. & Venkataramanan, M. (2002).
Introduction to mathematical programming -
applications and algorithms, 4th edition, Duxbury
Press, Boston, MA.

[13] Zanakis, S.H. (1983). “A staff to job assignment
(partitioning) problem with multiple objectives.”
Computer & Operations Research, 10(4), 357-363.

[14] Zhang, H., Li, X., Li, H., & Huang, F. (2005). “Particle
swarm optimization-based schemes for
resource-constrained project scheduling.” Automation
in Construction, 14(3), pp. 393-404.

[15] Zitzler, E., Deb, H., & Thiele, L. (2000). “Comparison
of multi-objective evolutionary algorithms: Empirical
results.” Evolutionary Computation, 8(2), 173-195.

Table 2. Input data

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
1 810 877 930 545 430 515 423 720 410 515 410 480 250 345 345 56.4 2175 1450
2 810 965 930 600 390 515 465 720 410 468 410 480 275 345 345 38.0 2790 1860
3 810 965 930 600 430 515 465 720 373 515 410 480 275 345 345 37.0 2790 1860
4 810 965 930 600 430 515 465 720 410 515 410 480 275 345 345 34.0 2790 1860
5 810 965 930 600 430 515 465 720 373 515 410 480 275 345 345 51.6 1245 830
6 810 965 930 600 430 515 465 655 410 515 410 480 275 314 345 42.4 930 620

61.2 65.2 35.2 36.8 34.2 35.8 39.2 34.8 35.4 42.6 34.2 25.0 23.0 36.8 33.8

s i (hr) g i (hr)

Te
am

r j

($1000)

Project c i ($)
ijt

-895-

ISARC2006

	003

