
WORKFLOWS IN CONSTRUCTIONS MODELLED WITH STOCHASTIC

ARTIFICIAL SOCIAL SYSTEMS

Calin Ciufudean, Constantin Filote
Stefan cel Mare University of Suceava

9 University Str., Suceava, RO-720225, Romania

calin@eed.usv.ro

Daniel Popescu
Technical University of Constructions

66 P.Protopopescu Bvd., Bucharest, Romania

dpopescu@instal.utcb.ro

Abstract: This paper focuses on evaluation of the performance characteristics of workflows in constructions modeled with

stochastic Petri nets (SPN). This goal is achieved by focusing on a new model for Artificial Social Systems (ASS) behaviors.

ASS exists in practically every multi-agent system, and play a major role in the performance and effectiveness of the agents.

This is the reason why we introduce a more suggestive model for ASS. To model these systems, a class of Petri nets is

adopted, and briefly introduced in the paper. This class allows representing the flow of physical resources and control

information data of the ASS’s components.

In the analysis of SPN we use simulations in respect to timing parameters in a generalized semi-Markov process (GSMP). By

using existing results on perturbation (e.g., delays in supply with raw materials, derangements of equipments, etc.) analysis

and by extending them to new physical interpretations we address unbiased sensitivity estimators correlated with practical

solutions in order to attenuate the perturbations. An important advantage of this approach is that one simulation is needed for

evaluating the stochastic Petri nets and the perturbation analysis and to take advantage of the state of the art.

Key-words: Workflow, Artificial Social Systems, Stochastic Petri nets.

1. INTRODUCTION

 An Artificial Social System (ASS) is a set of restrictions on

agent’s behavior in a multi-agent environment [1].

ASS allows agents to coexist in a shared environment and

pursue their respective goals in the presence of other agents.

A multi-agent system consists of several agents, where at

given point, each agent is in one of several states.

In each of its states, an agent can perform several actions.

The actions an agent performs at a given point may affect the

way the state of this agent and the state of other agents will

change.

A system of dependent automata consists of two or more

agents, each of which may be in one of a finite number of

different local states. We denote the set of local states of an

agent i by Pi. The set (P1, P2, ..., Pn) of states of the different

agents is called system’s configuration.

The set of possible actions an agent i can perform is a

function of the local state. For every state p∈Pi there is a set
Ai(p) of action that i can perform when in local state p.

The row actions (a1, ..., an) denote the actions the different

agents perform at a given point and is called their joint

action there. An agent’s next state is a function of the

system’s current configuration and the joint action

performed by the agents. A goal for an agent is identified

with one of its states. That is the reason why an agent has

plans how to attain its goal.

A plan for agent i in a dependent automata is a function U(p)

that associates with every state p of agent i a particular action

a∈Ai(p). A plan [2] is said to guarantee the attainment of a
particular goal starting from an initial state, in a given

dependent automata system, if by following this plan the

agent will attain the goal, regardless of what the other agent

will do, and what are the initial states of the other agents. A

dependent automata system is said to be social if, for every

initial state po and goal state pg, it is computationally feasible

for an agent to devise, on-line, an efficient plan that

guarantees to attain the goal pg state when starting in the

initial state po. For a proper behavior, a dependent automata

system is modeled with a social law. Formally, a social law

Q for a given dependent automata system consists of

functions (A
`
1, A

`
2, ..., A

`
N), satisfying A

`
1(p)⊂ A

`
1(p) for

every agent i and state p ∈ Pi. Intuitively, a social law will
restrict the set of actions an agent is “allowed” to perform at

any given state. Given a dependent automata system S and a

social law Q for S, if we replace the functions Ai of S by the

restricted functions A
`
i, we obtain new dependent automata

system. We denote this new system by S
Q
. In S

Q
 the agents

can behave only in a manner compatible with the social law

T [3], [4].

In controlling the actions, or strategies, available to an agent,

the social law plays a dual role. By reducing the set of

strategies available to a given agent, the social system may

limit the number of goals the agent is able to attain. By

restricting the behaviors of the other agents, however, the

social system may make it possible for the agent to attain

more goals and in some cases these goals will be attainable

using more efficient plans than in the absence of the social

system.

A semantic definition of artificial social systems gives us the

ability to reason about such systems. For example, the

manufacturer of the agents (e.g., robots) that are to function

in the social system will need to reason about whether its

creation will indeed be equipped with the hardware and the

-773-

ISARC2006

software necessary to follow the rules. In order to be able to

reason properly, we need a mathematical model and a

description language [8], [9]. We chose the stochastic Petri

nets model in order to model and simulate real conditions

encountered in constructions workflow planning. We shall

name on further accounts this model as Stochastic Artificial

Social System.

Petri nets have been recognized as a powerful tool for

modeling discrete event systems. Data networks, viewed as

discrete systems, are analyzed with such models. In the Petri

nets theory, mathematical tools are available for analysis of

the qualitative properties including deadlock-freeness,

boundedness, reversibility, s.a. [1]. However simulation

remains the effective for performance evaluation.

Perturbation (e.g., delays in supply with raw materials,

derangements of equipments, etc.) analysis has been

developed for evaluating sensitivity measures by using

simulations [2]. A generalized semi-Markov process

(GSMP) is the usual model for the stochastic processes of

discrete-event simulations, and most existing perturbation

analysis methods are based on the GSMP framework. Since

GSMP’s and stochastic Petri nets (SPN’s) have been proven

to have the same modeling power [3], existing perturbation

analysis methods are expected to apply to SPN’s. Petri nets

models considered here are SPN’s with random transition

firing times and the sensitivity estimators can be obtained

from a simulation run. Our perturbation analysis is based on

work of [5] and [6] which provides unbiased gradient

estimators for a broad class of GSMP`s. In this study,

unbiased estimators are applied by using an appropriate SPN

representation. Under correct conditioning, the unbiased

estimators are easily confirmed by the simulation run of the

GSP representation. This confirms the importance of

underlying stochastic process. Practical solutions are shown

in the paper, in order to give a concrete utilization of the

theoretical model realized with SPN. The remainder of this

paper is organized as follows. Section 2 presets SPN`s under

consideration, section 3 presents unbiased estimators for

general nets, and section 4 apply the theoretical approach to

a data network perturbation analysis, and explicates some

practical correlations between theory and practical

implementation.

2. STOCHASTIC PETRI NETS

 In an ordinary Petri net PN = (P, T, F, M0), where P and T

are two disjointed sets of nodes named, respectively, places

and transitions. F ⊆ (PXT) U (TXP) is a set of directed arcs.
M0: P → N is the initial marking.

Two transitions ti and tj are said to be in conflict if they have

at least one common input place. A transition t is said to be

conflict free if it is not in conflict with any other transition. A

transition may fire if it is enabled. A transition t ∈ T is said to

be enable at marking M if for all p ∈*t, M(p) ≥ 1. The SPN’s
considered here are ordinary Petri nets with un-timed and

timed transitions. In this paper we assume that timed

transitions are conflict free transitions, and they are single

server transitions. Untimed transitions can be in conflict

therefore we say that a marking is said to be stable if no

untimed transition is enabled. In the following assumptions

we assume that the initial marking is a stable marking. We

note by (M,T) a stable marking reachable from M by firing t.

The new stable marking M* is obtained from M according to

some routing probability. The basic idea is that in order to

guarantee that a stable marking can be reached; we must

ensure that the respective circuit contains at least one timed

transition. A SPN can be defined by the following elements

[4]:

Tt Set of timed transitions

Tn Set of untimed transitions

Ms Set of stable markings

T(M) Set of transitions enable at marking M

Ms(M,t) Set of stable markings reachable from M by

firing transition t

p(M*, M,t) Probability of reaching a stable marking M*

from M when t fires. Obviously, we have:

 p(M*,M,t) = 0 if M* ∉ Ms(M,t).

Ft(.) Distribution function of the firing time of t ∈ Tt

The GSMP representation of the SPN can be

characterized by the following parameters:

X(t,k) Independent random variables, where t ∈ Tt ,

and k ∈ N. Each X(t,k) has distribution Ft and
corresponds to the time of the k

th
 firing of

transition t.

U(t,k) Independent uniform random variables on

[0,1], where t ∈ Tt, k ∈ N. Each U(t,k)
corresponds to the routing indicator at the k

th

completion of t.

tn n
th
 completed timed transition

Mn Stable marking reached at the firing of tn

Sn Completion time of tn

τn Holding time of marking Mn-1

rn(t) Remaining firing time of transition t at Sn

V(t,n) Number of instances of t among t1 , …, tn.

The dynamic behavior of an SPN can be explained in the

following way: at the initial marking M0, set rn(t) =

X(t,1), ∀ t ∈ T(M0) and set V(t,0) = 0, ∀ t ∈ Tt. All other
parameters tn+1, τn+1, sn+1, V(t,n+1), Mn+1, rn+1 can be

determined recursively as usually done in discrete event

simulation. Recursive equations are given in [5]. The

following routing mechanism is used in GSMP:

 Mn+1 = ∅(Mn, tn+1, U(tn+1,V(tn+1,n+1))) (1)

-774-

ISARC2006

Where ∅ is a mapping such that P(∅(M,t,U) = M*) = P(M*,M,t)

3. PERTURBATION PARAMETERS MODELLED

WITH SPN

Following the approach given in [5], we suppose that the

distributions of firing times depend on a parameter Ө.

Parameters defined in section 2 are, in the above assumption,

functions of Ө. In perturbation analysis the following results

hold [6], where performance measures under consideration

are of the form g(M1, t1, τ1, …,Mn,tn,τn) and a shorthand

notation g(Ө) is used:

a) For each Ө, g(Ө) is a.s. continuously differentiable at Ө and

the infinitesimal perturbation indicator is:

()

dθ

dτ

τ

g

dθ

θdg i
n

1i i

⋅
∂

∂
=∑

=

. (2)

b) If d ∈ [g(Ө)]/dӨ exists, the following perturbation
estimator is unbiased:

 ()∑∑
==

⋅+⋅
∂

∂
n

1k

kkk Ghf
dθ

dτ

τ

g i
n

1i i

. (3)

Where fk =
()()

() ()()()1kk1tkk1kk1tk

1kk1tk

tLFytLF

tLf

++++

++

−+
 (4)

 yk = min {rk(t) : ∀t ∈ T(Mk) – {tk+1}} (5)

 τk =
() ()

θ
− ++

d

tdXt 1k1k

dθ

dLk (6)

Lk(t) is the age of time transition t at Sk; Gk = gpp,k - gDNP,k. The

sample path (M1(Ө), t1(Ө), τ1(Ө), …,Mn(Ө), tn(Ө), τn(Ө)) is

the nominal path denoted by NP. gDNP,k is the performance

measure of the k
th
 degenerated nominal path, denoted by

DNPk. It is identical to NP except for the sojourn time of the

(k+1)th stable marking in DNPk. gpp,k is the performance

measure of a so-called k
th
 perturbed path, denoted by PPk. It is

identical to DNPk up to time sk. At this instant the order of

transition tk and tk+1 is reversed, i.e., the firing of tk+1 completes

just before that of tk in PPk. We notice that by definition, DNPk

and PPk are identical up to sk. At sk, the events tk and tk+1 occur

almost simultaneously, but tk occurs first in DNP and tk+1

occurs first in PPk. The commuting condition given in [6]

guarantees that the two samples paths became identical after

the firing of both tk and tk+1. Our goal is to introduce a

correction mechanism in the structure of the SPN so that the

transition tk and tk+1 fire in the desired order, and the routing

mechanism given in relation (1) is re-established. We will

exemplify this approach on an example, and we will correlate

the theoretical assumption with some practical mechanisms in

order to verify the approach.

4. APPLICATION TO A QUEUING NETWORK

In Fig.1, we represented a workflow queuing network. The

servers are s1, s2, and for any of them, if the downstream buffer

is full, the customer is blocked until the downstream buffer has

one hole. For simplicity of the Petri net model, we consider

the perturbation analysis of only one way in the workflow

[10].

In the corresponding SPN of the system in Fig.1, the

transitions t1 and t4 model the arrivals (see Fig.2). Transitions

t3,t6,t7,t9 are un-timed transitions, and are used to model the

materials departure between constructors.

Fig. 1. A data queuing network with finite line capacity

The transitions t2,t5,t8 model the service periods in the

network. The holding times of the transitions t2,t5,t8 in the SPN

are identical to the service times of computers in the

workflow. The un-timed transitions in Fig.2 are figured with

bars, and the timed transitions are figures with boxes. First, in

our discussion we will consider only the elements of the Petri

net drawn with filled lines.

Fig. 2. The SPN model of the queuing network given in Fig.1

The information transmitted to p11 by firing t7 is determined by

u’ (routing indicator defined in section 2, see relation (1))

when t2 fires first and it is determined by u” when t5 fires first.

Since u’ and u” are independent random variables, the

commuting condition given in [6] does not hold (i.e.,

∅(∅(M,t2,u’),t5,u”) can be different from

∅(∅(M,t5,u”),t2,u’). In order to make true the commuting
condition we added in Fig.2 the following elements:

a) Locations p2*, respectively p5* and corresponding arcs play

the role to ensure the desired order in firing transitions t3,

respectively t6.

b) Locations p7, p8, p9, p10, and p13 and corresponding arcs

ensure a Kanban mechanism in the SPN, in order to achieve

P2

P1

S1 S2

P2
*

t3

t7

t2 t1

t4
t5 t6 t8 t9

P8

P1

P7

P2 P3

P9

P13

P4 P5 P6

P10

P11 P12

P5*

-775-

ISARC2006

the desired order in firing transitions t3 and t6, and, for p13, a

delay in materials transmission to the output. Locations p7 and

p8 (drawn with dotted lines) ensures the priorities in servicing

of the materials flow arrivals (the arrival of the external raw

materials).

For the average delay of demands (g = ()∑
=

τ⋅
n

1i

ii pM
n

4
) the

perturbation estimator given in (2) is unbiased.

 ()∑∑
=

−

=
θ

τ
⋅=⋅

∂

∂
n

1i

i
1i

d

d
pM

n

4

n

4

dθ

dτ

τ

g i
n

1i i

 (7)

g = ()∑
=

− τ⋅
n

1i

i1iML
n

4
 (8)

Where L(Mi) = Mi(p1) + Mi(p2) + Mi(p3) + Mi(p4) + Mi(p5) +

Mi(p6) + Mi(p8).

The perturbation estimator is equal to:

()∑
=

−
θ

τ
⋅

n

1i

i
1i
d

d
ML

n

4
 (9)

Assuming that firing times are exponentially distributed with

mean equal to: Ө for t1 and t2; 1 for t2; 0,86 for t5; 0,75 for t8,

we consider the average customer delay (Ө). The mean value

of the gradient evaluated at Ө = 1.22 and at Ө = 1.24 is close

to the central finite difference: (E[g(1.24) – E[g(1.20)]) / 0,04

= -10.27. This result is acceptable, and we notice that

additional values can be obtained by modifying the net

structure as discussed before, and as it is drawn with dotted

lines in Fig.2, by modifying the marking in the places p7 and

p8.

5. A FLEXIBLE CONSTRUCTION SYSTEM

5.1 The system description

The construction system considered in this paper

consists of two cells linked together by a material system

composed of two buffers A and B and a conveyor. Each cell

consists of a machine to handle within cell part movement.

Pieces enter the system at the load/unload station, where

they are released from those two buffers, A and B, and then

are sorted in cells (pieces of type “a“ in one cell, and pieces

of type “b” in the other cell). We notice that in the buffer A

are pieces of types “a”, “b”, and others, where the number of

pieces “a” is greater than the number of pieces “b”. In the

buffer B there are pieces of types “a”, “b”, and others, where

the number of pieces “b” is greater than the number of pieces

“a”. The conveyor moves pieces between the load/unload

station the various cells. The sorted piece leaves the system,

and an unsorted piece enters in the system, respectively in

one of those two buffers A or B. The conveyor along with

the central storage incorporates a sufficiently large buffer

space, so that it can be thought of as possessing infinite

storage capacity. Thus, if a piece routed to a particular cell

finds that the cell is full, it is refused entry and is routed back

to the centralized storage area. If a piece routed by conveyor

is of a different type of the required types to be sorted,

respectively “a”, and “b”, then that piece is rejected out of

the system. We notice that once a piece is blocked from

entry in a cell, the conveyor does not stop service; instead it

proceed with its operation on the other pieces waiting for

transport. At the system level, we assume that the cells are

functionally equivalent, so that each cell can provide the

necessary processing for a piece. Hence, one cell is

sufficient to maintain production (at a reduced throughput).

We say that the manufacturing system is available (or,

operational) if the conveyor and at least one of the cells are

available. A cell is available if its machine is available. Over

a specified period of operation, owing to the randomly

occurring subsystem failures and subsequent repairs, the

cellular construction system (CCS) will function in different

configurations and exhibit varying levels of performance

over the random residence times in these configurations. The

logical model of our manufacturing system is showed in

Fig.3.

Fig. 3. Logical model for a manufacturing system

5.2 A Markov model for evaluating the availability of the

system

 For the flexible manufacturing system depicted

in Fig.1, we assume that the machines are failure-prone,

while the load/unload station and the conveyor are extremely

reliable. Assuming the failure times and the repair times to

be exponentially distributed, we can formulate the state

process as a continuous time Markov chain (CTMC). The

state process is given by {X(u), u ≥ 0} with state space S =

{(ij), i∈ {0,1,2}, j ∈ {0,1}}, where i denotes the number of
machine working, and j denotes the status of the material

handling system (load station and conveyor): up (1), and

down (0). We consider the state independent (or, time

dependent) failure case and the operation dependent failure

case separately.

Pieces rejected

Load/

unload

station and

conveyor

Cell 1

Cell 2

-776-

ISARC2006

Time dependent failures: In this case, the component fails

irrespective of whether the system is operational or not. All

failure states are recoverable. Let ra and rm denote the repair

rates of the material handling system, and a machine

respectively. The state process is shown in Fig.4,a.

a)

for machines:

for MHS:

b)

Fig.4. State process of a CCS with time-dependent failures,

(a) State process for a state-independent failure model,

 (b) Decomposed failure/repair process

Because the failure/repair behavior of the system

components are independent, the state process can be

decomposed into two CTMCs as shown in Fig.2.b.

Analytically, the state process is expressed by relations: S0 =

{(21), (11)} and SF = {(20),(10), (00)}. For each state in SF

no production is possible since the Material Handling

System (MHS) or both the machines are down. In Fig.2.b the

failure/repair behaviour of each resource type (machines or

MHS) is described by a unique Markov chain. Thus, the

transient state probabilities, pij(t) can be obtained from

relation:

pij(t) = pi(t)pj(t) (10)

where pi(t) is the probability that i machines are working at

time t for i = 0,1,2. The probability pi(t) is obtained by

solving (separately) the failure/repair model of the

machines. Pj(t) is the probability that j MHS (load/unload

station and conveyor) are working at instant t , for j = 0,1.

Let fa and fm denote the failure rates of the MHS and of a

machine respectively.

Operation-dependent failures: Assume that when the

system is functional, the resources are all fully utilized.

Since failures occur only when the system is operational, the

state space is: S = {(21), (11), (20), (10), (01)}, with S0 =

{(21), (11)}, SF = {(20), (10), (01)}. The Markov chain

model is shown in Fig.5. Transitions representing failure

will be allowed only when the resource is busy. Transitions

rates can however be computed as the product of the failure

rates and percentage utilization of the resource, and Tk
ij

represents the average utilization of the k
th
 resource in the

state (ij).

Fig.5. State process of a CCS with state-dependent failures

5.3 Numerical study

 For the CCS presented in this paper, in the table 1 are given

the failure/repair data of the system components We notice

that Tk
ij
 (the average utilization of the system of the k

th

resource in state (ij), Tk
ij
 = 1 since the utilization in each

operational state is 100% for all i, j, k, i = {0,1,2}, j = {0,1},

k = 4. The other notations used in table 1 are: f is the

exponential failure rate of resources, r is the exponential

repair rate of resources, Np is the required minimum number

of operational machines in cell p, p = {1,2}, and np is the

total number of machines in cell p.

Table 1. Data for the numerical study

 R F Np np Tk
ij

Machines 1 0,05 1 2 1

MHS 0,2 0,001 1 1 1

From Fig.2 and Fig.3 we calculate the corresponding

infinitesimal generators and after that, the probability vector

of CTMC. With relation (10) we calculate the availability of

CCS. The computational results are summarized in Table 2

for the state process given in Fig.4 (CCS with

time-dependent failures), and respectively in Table 3 for the

state process given in Fig.5 (CCS with state-dependent

failures). We consider the system operation over an interval

of 24 hours (three consecutive shifts).

fa fa

2fm

ra fa

2fm
fm

ra

rm rm

rm rm

ra

fm

21
11 01

20 10 00

2fm fm

rm rm

21 11 01

ra

fa

1 0

ra

Ta
21fa

ra Ta11 fa

2fmTm
21

fmTm
11

rm rm

21 11 01

20 10

-777-

ISARC2006

 Table 2. Computational results for the CCS in Fig.4

Time hour Machines MHS System

Availability

0 1.0000 1.0000 1.0000

1 0.9800 0.9548 0.9217

4 0.9470 0.8645 0.7789

8 0.9335 0.8061 0.7025

12 0.9330 0.7810 0.6758

16 0.9331 0.7701 0.6655

20 0.9330 0.7654 0.6623

24 0.9328 0.7648 0.6617

Table 3. Computational results for the CCS in Fig.5

Time hour Machines MHS System

Availability

0 1.0000 1.0000 1.0000

1 0.9780 0.9528 0.9201

4 0.9450 0.8628 0.7762

8 0.9315 0.8039 0.7008

12 0.9310 0.7798 0.6739

16 0.9320 0.7688 0.6632

20 0.9318 0.7639 0.6598

24 0.9320 0.7636 0.6583

The results of the availability analysis of the construction

system are illustrated in Fig.4, which depicts the availability

of the system as a function of the time. The numbers x = 1, 2

indicate the system in Fig.4, respectively Fig.5. One can see

from Fig.6 that the layout with CCS with time-dependent

failures is superior to that with CCS with state-dependent

failure.

Fig.6 Availability analysis of the CCS

6. CONCLUSIONS

 In this paper we analysed the perturbation estimators in

digital systems modelled with stochastic Petri nets (SPN`s).

The approach presented in this paper (e.g., Stochastic

Artificial Social Systems) can be used to analyze SPN`s that

model complex dynamic system interactions. Unbiased

gradient estimators proposed in [4], [6] were used for the

sensitivity analysis of the GSMP representation and some

practical solutions for attenuating the perturbations influences

were indicated. The proposed procedure was imagined for a

data network perturbation analysis. We estimate that this

methodology can be applied to modelling and analysis of

manufacturing systems, job scheduling in a chain

management system, such as construction systems. Future

research will focus to differential and fluid Petri nets in order

on estimate throughput of complex systems.

An analytical technique for the availability evaluation of the

construction systems was presented. The novelty of the

approach is that the construction of large Markov chains is

not required. Using a structural decomposition, the

construction system is divided into cells. For each cell a

Markov model was derived and the probability was

determined of at least Ni working machines in cell i, for i =

1,2,..,n and j working material handling system (MHS) at

time t, where Ni and j satisfy the system production capacity

requirements. The model presented in this paper can be

extended to include other components, e.g., tools, control

systems. The results reported here can form the basis of

several enhancements, such as conducting performance

studies of with multiple part types.

REFERENCES

[1] T. Murata, Petri nets: Properties, analysis and

applications, Proc. IEEE, vol. 77, pp. 541-580, 1989.

[2] F. Baccelli, Z. Liu, Comparison properties of stochastic

decision free Petri nets, IEEE Trans. on Autom. Contr.,

vol. 37, No. 12, pp. 1905-1920, 1992

[3] P. J. Haas, G. S. Shendler, Stochastic Petri nets: Modeling

power and limit theorems, Probability Eng. Inform. Sci.,

vol. 5, pp. 477-498, 1991

[4] M. C. Fu and J. Q. Hu, Extensions and generalizations of

smoothed perturbation analysis in a generalized

semi-Markov process framework, IEEE Trans. Automat.

Contr., vol. 37, pp. 1483-1500, 1992

[5] F. Archetti, A. Gaivoronski, A. Sciomachen, Sensitivity

analysis and optimisation of stochastic Petri nets, J.

Discrete Event Dynamic Systems: Theory Appl., vol. 3,

pp.5-37, 1993

[6] X. Xie, Perturbation analysis of stochastic Petri nets,

IEEE Trans. on Autom. Control, vol. 43, No. 1, pp. 76-80,

1998

[7] Sh. T. Yee, J. A. Ventura, Phase-type approximation of

Petri nets for analysis of manufacturing systems, IEEE

Trans. on Rob. and Autom., No. 3, pp. 318-322, 2000

[8] C. Ciufudean, D. Popescu, "Modeling Digital Signal

Perturbation with Stochastic Petri Nets", Advances in

Electrical and Computer Engineering, vol. 4(II), no. 1

(21), pp. 71-75, Suceava, Romania, 2004.

[9] C. Ciufudean, A.B. Larionescu, “Safety criteria for

production lines modeled with Petri nets”, Advances in

Electrical and Computer Engineering, vol. 2(9),

no.2(18), pp.15-20, 2002.

[10] Ciufudean C., “Modeling the reliability of the interaction

man-machine in railway transport”, The Annals of the

 “Stefan cel Mare” University of Suceava, No.13,

pp.80-84, 2000.

t(hours)

 1`

0.9

 0.8

 0.7

 .

 0.6

 0 1 4 8 12 16 20 24

A

 x = 1

 x = 2

-778-

ISARC2006

-779-

ISARC2006

	006

