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Abstract: This paper focuses on evaluation of the performance characteristics of workflows in constructions modeled with 

stochastic Petri nets (SPN). This goal is achieved by focusing on a new model for Artificial Social Systems (ASS) behaviors. 

ASS exists in practically every multi-agent system, and play a major role in the performance and effectiveness of the agents. 

This is the reason why we introduce a more suggestive model for ASS. To model these systems, a class of Petri nets is 

adopted, and briefly introduced in the paper. This class allows representing the flow of physical resources and control 

information data of the ASS’s components. 

In the analysis of SPN we use simulations in respect to timing parameters in a generalized semi-Markov process (GSMP). By 

using existing results on perturbation (e.g., delays in supply with raw materials, derangements of equipments, etc.) analysis 

and by extending them to new physical interpretations we address unbiased sensitivity estimators correlated with practical 

solutions in order to attenuate the perturbations. An important advantage of this approach is that one simulation is needed for 

evaluating the stochastic Petri nets and the perturbation analysis and to take advantage of the state of the art.  

 

Key-words: Workflow, Artificial Social Systems, Stochastic Petri nets.

1. INTRODUCTION 

  An Artificial Social System (ASS) is a set of restrictions on 

agent’s behavior in a multi-agent environment [1]. 

ASS allows agents to coexist in a shared environment and 

pursue their respective goals in the presence of other agents. 

A multi-agent system consists of several agents, where at 

given point, each agent is in one of several states. 

In each of its states, an agent can perform several actions. 

The actions an agent performs at a given point may affect the 

way the state of this agent and the state of other agents will 

change.   

A system of dependent automata consists of two or more 

agents, each of which may be in one of a finite number of 

different local states. We denote the set of local states of an  

agent i by Pi. The set (P1, P2, ..., Pn) of states of the different 

agents is called system’s configuration.  

The set of possible actions an agent i can perform is a 

function of the local state. For every state p∈Pi there is a set 
Ai(p) of action that i can perform when in local state p. 

The row actions (a1, ..., an) denote the actions the different 

agents perform at a given point and is called their joint 

action there. An agent’s next state is a function of the 

system’s current configuration and the joint action 

performed by the agents. A goal for an agent is identified 

with one of its states. That is the reason why an agent has 

plans how to attain its goal. 

A plan for agent i in a dependent automata is a function U(p) 

that associates with every state p of agent i a particular action 

a∈Ai(p). A plan [2] is said to guarantee the attainment of a 
particular goal starting from an initial state, in a given 

dependent automata system, if by following this plan the  

 

agent will attain the goal, regardless of what the other agent 

will do, and what are the initial states of the other agents. A 

dependent automata system is said to be social if, for every 

initial state po and goal state pg, it is computationally feasible 

for an agent to devise, on-line, an efficient plan that 

guarantees to attain the goal pg state when starting in the 

initial state po. For a proper behavior, a dependent automata 

system is modeled with a social law. Formally, a social law 

Q for a given dependent automata system consists of 

functions (A
`
1, A

`
2, ..., A

`
N), satisfying A

`
1(p)⊂  A

`
1(p) for 

every agent i and state p ∈  Pi. Intuitively, a social law will 
restrict the set of actions an agent is “allowed” to perform at 

any given state. Given a dependent automata system S and a 

social law Q for S, if we replace the functions Ai of S by the 

restricted functions A
`
i, we obtain new dependent automata 

system. We denote this new system by S
Q
. In S

Q
 the agents 

can behave only in a manner compatible with the social law 

T [3], [4].  

In controlling the actions, or strategies, available to an agent, 

the social law plays a dual role. By reducing the set of 

strategies available to a given agent, the social system may 

limit the number of goals the agent is able to attain. By 

restricting the behaviors of the other agents, however, the 

social system may make it possible for the agent to attain 

more goals and in some cases these goals will be attainable 

using more efficient plans than in the absence of the social 

system. 

A semantic definition of artificial social systems gives us the 

ability to reason about such systems. For example, the 

manufacturer of the agents (e.g., robots) that are to function 

in the social system will need to reason about whether its 

creation will indeed be equipped with the hardware and the 
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software necessary to follow the rules. In order to be able to 

reason properly, we need a mathematical model and a 

description language [8], [9].  We chose the stochastic Petri 

nets model in order to model and simulate real conditions 

encountered in constructions workflow planning. We shall 

name on further accounts this model as Stochastic Artificial 

Social System. 

Petri nets have been recognized as a powerful tool for 

modeling discrete event systems. Data networks, viewed as 

discrete systems, are analyzed with such models. In the Petri 

nets theory, mathematical tools are available for analysis of 

the qualitative properties including deadlock-freeness, 

boundedness, reversibility, s.a. [1]. However simulation 

remains the effective for performance evaluation. 

Perturbation (e.g., delays in supply with raw materials, 

derangements of equipments, etc.) analysis has been 

developed for evaluating sensitivity measures by using 

simulations [2]. A generalized semi-Markov process 

(GSMP) is the usual model for the stochastic processes of 

discrete-event simulations, and most existing perturbation 

analysis methods are based on the GSMP framework. Since 

GSMP’s and stochastic Petri nets (SPN’s) have been proven 

to have the same modeling power [3], existing perturbation 

analysis methods are expected to apply to SPN’s. Petri nets 

models considered here are SPN’s with random transition 

firing times and the sensitivity estimators can be obtained 

from a simulation run. Our perturbation analysis is based on 

work of [5] and [6] which provides unbiased gradient 

estimators for a broad class of GSMP`s. In this study, 

unbiased estimators are applied by using an appropriate SPN 

representation. Under correct conditioning, the unbiased 

estimators are easily confirmed by the simulation run of the 

GSP representation. This confirms the importance of 

underlying stochastic process. Practical solutions are shown 

in the paper, in order to give a concrete utilization of the 

theoretical model realized with SPN. The remainder of this 

paper is organized as follows. Section 2 presets SPN`s under 

consideration, section 3 presents unbiased estimators for 

general nets, and section 4 apply the theoretical approach to 

a data network perturbation analysis, and explicates some 

practical correlations between theory and practical 

implementation.       

2. STOCHASTIC PETRI NETS 

  In an ordinary Petri net PN = (P, T, F, M0), where P and T 

are two disjointed sets of nodes named, respectively, places 

and transitions. F ⊆ (PXT) U (TXP) is a set of directed arcs. 
M0: P → N is the initial marking. 

Two transitions ti and tj are said to be in conflict if they have 

at least one common input place. A transition t is said to be 

conflict free if it is not in conflict with any other transition. A 

transition may fire if it is enabled. A transition t ∈ T is said to 

be enable at marking M if for all p ∈*t, M(p) ≥ 1. The SPN’s 
considered here are ordinary Petri nets with un-timed and 

timed transitions. In this paper we assume that timed 

transitions are conflict free transitions, and they are single 

server transitions. Untimed transitions can be in conflict 

therefore we say that a marking is said to be stable if no 

untimed transition is enabled. In the following assumptions 

we assume that the initial marking is a stable marking. We 

note by (M,T) a stable marking reachable from M by firing t. 

The new stable marking M* is obtained from M according to 

some routing probability. The basic idea is that in order to 

guarantee that a stable marking can be reached; we must 

ensure that the respective circuit contains at least one timed 

transition. A SPN can be defined by the following elements 

[4]: 

Tt Set of timed transitions 

Tn Set of untimed transitions 

Ms Set of stable markings 

T(M) Set of transitions enable at marking M 

Ms(M,t) Set of stable markings reachable from M by 

firing transition t 

p(M*, M,t) Probability of reaching a stable marking M* 

from M when t fires. Obviously, we have: 

 p(M*,M,t) = 0 if M* ∉ Ms(M,t). 

Ft(.) Distribution function of the firing time of t ∈ Tt  

The GSMP representation of the SPN can be 

characterized by the following parameters: 

X(t,k) Independent random variables, where t ∈ Tt , 

and k ∈ N. Each X(t,k) has distribution Ft and 
corresponds to the time of the k

th
 firing of 

transition t. 

U(t,k) Independent uniform random variables on 

[0,1], where t ∈ Tt, k ∈ N. Each U(t,k) 
corresponds to the routing indicator at the k

th
 

completion of t. 

tn n
th
 completed timed transition 

Mn Stable marking reached at the firing of tn 

Sn Completion time of tn 

τn Holding time of marking Mn-1 

rn(t) Remaining firing time of transition t at Sn 

V(t,n) Number of instances of t among t1 , …, tn. 

The dynamic behavior of an SPN can be explained in the 

following way: at the initial marking M0, set rn(t) = 

X(t,1), ∀ t ∈ T(M0) and set V(t,0) = 0, ∀ t ∈ Tt. All other 
parameters tn+1, τn+1, sn+1, V(t,n+1), Mn+1, rn+1 can be 

determined recursively as usually done in discrete event 

simulation. Recursive equations are given in [5]. The 

following routing mechanism is used in GSMP: 

 

 Mn+1 = ∅(Mn, tn+1, U(tn+1,V(tn+1,n+1)))                 (1) 
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Where ∅ is a mapping such that P(∅(M,t,U) = M*) = P(M*,M,t) 

3. PERTURBATION PARAMETERS MODELLED 

WITH SPN 

Following the approach given in [5], we suppose that the 

distributions of firing times depend on a parameter Ө. 

Parameters defined in section 2 are, in the above assumption, 

functions of Ө. In perturbation analysis the following results 

hold [6], where performance measures under consideration 

are of the form g(M1, t1, τ1, …,Mn,tn,τn) and a shorthand 

notation g(Ө) is used: 

a) For each Ө, g(Ө) is a.s. continuously differentiable at Ө and 

the infinitesimal perturbation indicator is: 

 
( )

dθ

dτ

τ

g

dθ

θdg i
n

1i i

⋅
∂

∂
=∑

=

. (2) 

b) If d ∈ [g(Ө)]/dӨ exists, the following perturbation 
estimator is unbiased: 

 ( )∑∑
==

⋅+⋅
∂

∂
n

1k

kkk Ghf
dθ

dτ

τ

g i
n

1i i

. (3) 

Where fk = 
( )( )

( ) ( )( )( )1kk1tkk1kk1tk

1kk1tk

tLFytLF

tLf

++++

++

−+
            (4) 

                    yk = min {rk(t) : ∀t ∈ T(Mk) – {tk+1}}              (5) 

 

          τk = 
( ) ( )

θ
− ++

d

tdXt 1k1k

dθ

dLk                          (6) 

 

Lk(t) is the age of time transition t at Sk; Gk = gpp,k - gDNP,k. The 

sample path (M1(Ө), t1(Ө), τ1(Ө), …,Mn(Ө), tn(Ө), τn(Ө)) is 

the nominal path denoted by NP. gDNP,k is the performance 

measure of the k
th
 degenerated nominal path, denoted by 

DNPk. It is identical to NP except for the sojourn time of the 

(k+1)th stable marking in DNPk. gpp,k is the performance 

measure of a so-called k
th
 perturbed path, denoted by PPk. It is 

identical to DNPk up to time sk. At this instant the order of 

transition tk and tk+1 is reversed, i.e., the firing of tk+1 completes 

just before that of tk in PPk. We notice that by definition, DNPk 

and PPk are identical up to sk. At sk, the events tk and tk+1 occur 

almost simultaneously, but tk occurs first in DNP and tk+1 

occurs first in PPk. The commuting condition given in [6] 

guarantees that the two samples paths became identical after 

the firing of both tk and tk+1. Our goal is to introduce a 

correction mechanism in the structure of the SPN so that the 

transition tk and tk+1 fire in the desired order, and the routing 

mechanism given in relation (1) is re-established. We will 

exemplify this approach on an example, and we will correlate 

the theoretical assumption with some practical mechanisms in 

order to verify the approach.  

 

4.  APPLICATION TO A QUEUING NETWORK 

In Fig.1, we represented a workflow queuing network. The 

servers are s1, s2, and for any of them, if the downstream buffer 

is full, the customer is blocked until the downstream buffer has 

one hole. For simplicity of the Petri net model, we consider 

the perturbation analysis of only one way in the workflow 

[10]. 

In the corresponding SPN of the system in Fig.1, the 

transitions t1 and t4 model the arrivals (see Fig.2). Transitions 

t3,t6,t7,t9 are un-timed transitions, and are used to model the 

materials departure between constructors. 

 

  

 

 

 

 

 

Fig. 1.  A data queuing network with finite line capacity 

The transitions t2,t5,t8 model the service periods in the 

network. The holding times of the transitions t2,t5,t8 in the SPN 

are identical to the service times of computers in the 

workflow. The un-timed transitions in Fig.2 are figured with 

bars, and the timed transitions are figures with boxes. First, in 

our discussion we will consider only the elements of the Petri 

net drawn with filled lines. 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2. The SPN model of the queuing network given in Fig.1 

The information transmitted to p11 by firing t7 is determined by 

u’ (routing indicator defined in section 2, see relation (1)) 

when t2 fires first and it is determined by u” when t5 fires first. 

Since u’ and u” are independent random variables, the 

commuting condition given in [6] does not hold (i.e., 

∅(∅(M,t2,u’),t5,u”) can be different from 

∅(∅(M,t5,u”),t2,u’). In order to make true the commuting 
condition we added in Fig.2 the following elements: 

a) Locations p2*, respectively p5* and corresponding arcs play 

the role to ensure the desired order in firing transitions t3, 

respectively t6.  

b) Locations p7, p8, p9, p10, and p13 and corresponding arcs 

ensure a Kanban mechanism in the SPN, in order to achieve 

P2 

P1 

S1 S2 

P2
* 

t3 

t7 

t2 t1 

t4 
t5 t6 t8 t9 

P8 

P1 

P7 

P2 P3 

P9 

P13 

P4 P5 P6 

P10 

P11 P12 

P5* 
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the desired order in firing transitions t3 and t6, and, for p13, a 

delay in materials transmission to the output. Locations p7 and 

p8 (drawn with dotted lines) ensures the priorities in servicing 

of the materials flow arrivals (the arrival of the external raw 

materials).  

For the average delay of demands (g = ( )∑
=

τ⋅
n

1i

ii pM
n

4
) the 

perturbation estimator given in (2) is unbiased. 

 

    ( )∑∑
=

−

=
θ

τ
⋅=⋅

∂

∂
n

1i

i
1i

d

d
pM

n

4

n

4

dθ

dτ

τ

g i
n

1i i

                   (7) 

 

g = ( )∑
=

− τ⋅
n

1i

i1iML
n

4
                    (8) 

 

Where L(Mi) = Mi(p1) + Mi(p2) + Mi(p3) + Mi(p4) + Mi(p5) + 

Mi(p6) + Mi(p8).  

 

The perturbation estimator is equal to:  

 

( )∑
=

−
θ

τ
⋅

n

1i

i
1i
d

d
ML

n

4
                                (9) 

 

Assuming that firing times are exponentially distributed with 

mean equal to: Ө for t1 and t2; 1 for t2; 0,86 for t5; 0,75 for t8, 

we consider the average customer delay (Ө). The mean value 

of the gradient evaluated at Ө = 1.22 and at Ө = 1.24 is close 

to the central finite difference: (E[g(1.24) – E[g(1.20)]) / 0,04 

= -10.27. This result is acceptable, and we notice that 

additional values can be obtained by modifying the net 

structure as discussed before, and as it is drawn with dotted 

lines in Fig.2, by modifying the marking in the places p7 and 

p8. 

 

5.  A FLEXIBLE CONSTRUCTION SYSTEM 

 

5.1 The system description  

The construction system considered in this paper 

consists of two cells linked together by a material system 

composed of two buffers A and B and a conveyor. Each cell 

consists of a machine to handle within cell part movement. 

Pieces enter the system at the load/unload station, where 

they are released from those two buffers, A and B, and then 

are sorted in cells (pieces of type “a“ in one cell, and pieces 

of type “b” in the other cell). We notice that in the buffer A 

are pieces of types “a”, “b”, and others, where the number of 

pieces “a” is greater than the number of pieces “b”. In the 

buffer B there are pieces of types “a”, “b”, and others, where 

the number of pieces “b” is greater than the number of pieces 

“a”. The conveyor moves pieces between the load/unload 

station the various cells. The sorted piece leaves the system, 

and an unsorted piece enters in the system, respectively in 

one of those two buffers A or B. The conveyor along with 

the central storage incorporates a sufficiently large buffer 

space, so that it can be thought of as possessing infinite 

storage capacity. Thus, if a piece routed to a particular cell 

finds that the cell is full, it is refused entry and is routed back 

to the centralized storage area. If a piece routed by conveyor 

is of a different type of the required types to be sorted, 

respectively “a”, and “b”, then that piece is rejected out of 

the system. We notice that once a piece is blocked from 

entry in a cell, the conveyor does not stop service; instead it 

proceed with its operation on the other pieces waiting for 

transport. At the system level, we assume that the cells are 

functionally equivalent, so that each cell can provide the 

necessary processing for a piece. Hence, one cell is 

sufficient to maintain production (at a reduced throughput). 

We say that the manufacturing system is available (or, 

operational) if the conveyor and at least one of the cells are 

available. A cell is available if its machine is available. Over 

a specified period of operation, owing to the randomly 

occurring subsystem failures and subsequent repairs, the 

cellular construction system (CCS) will function in different 

configurations and exhibit varying levels of performance 

over the random residence times in these configurations. The 

logical model of our manufacturing system is showed in 

Fig.3. 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3. Logical model for a manufacturing system 

 

 

5.2  A Markov model for evaluating the availability of the 

system 

  For the flexible manufacturing system depicted 

in Fig.1, we assume that the machines are failure-prone, 

while the load/unload station and the conveyor are extremely 

reliable. Assuming the failure times and the repair times to 

be exponentially distributed, we can formulate the state 

process as a continuous time Markov chain (CTMC). The 

state process is given by {X(u), u ≥ 0} with state space S = 

{(ij), i∈ {0,1,2}, j ∈ {0,1}}, where i denotes the number of 
machine working, and j denotes the status of the material 

handling system (load station and conveyor): up (1), and 

down (0). We consider the state independent (or, time 

dependent) failure case and the operation dependent failure 

case separately. 

Pieces rejected 

Load/ 

unload 

station and 

conveyor 

Cell 1 

Cell 2 
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Time dependent failures: In this case, the component fails 

irrespective of whether the system is operational or not. All 

failure states are recoverable. Let ra and rm denote the repair 

rates of the material handling system, and a machine 

respectively. The state process is shown in Fig.4,a.  

 

 

 

 

                           

                                    

                                         

 

 

 

 

 

a) 

 

for machines: 

 

 

 

 

 

for MHS: 

 

 

 

b) 

 

Fig.4. State process of a CCS with time-dependent failures, 

(a) State process for a state-independent failure model, 

 (b) Decomposed failure/repair process 

 

Because the failure/repair behavior of the system 

components are independent, the state process can be 

decomposed into two CTMCs as shown in Fig.2.b. 

Analytically, the state process is expressed by relations: S0 = 

{(21), (11)} and SF = {(20),(10), (00)}. For each state in SF 

no production is possible since the Material Handling 

System (MHS) or both the machines are down. In Fig.2.b the 

failure/repair behaviour of each resource type (machines or 

MHS) is described by a unique Markov chain. Thus, the 

transient state probabilities, pij(t) can be obtained from 

relation: 

pij(t) = pi(t)pj(t)                       (10) 

 

where pi(t) is the probability that i machines are working at 

time t for i = 0,1,2. The probability pi(t) is obtained by 

solving (separately) the failure/repair model of the 

machines. Pj(t) is the probability that j MHS (load/unload 

station and conveyor) are working at instant t , for j = 0,1.  

Let fa and fm denote the failure rates of the MHS and of a 

machine respectively. 

Operation-dependent failures: Assume that when the 

system is functional, the resources are all fully utilized. 

Since failures occur only when the system is operational, the 

state space is: S = {(21), (11), (20), (10), (01)}, with S0 = 

{(21), (11)}, SF = {(20), (10), (01)}. The Markov chain 

model is shown in Fig.5. Transitions representing failure 

will be allowed only when the resource is busy. Transitions 

rates can however be computed as the product of the failure 

rates and percentage utilization of the resource, and Tk
ij 

represents the average utilization of the k
th
 resource in the 

state (ij). 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.5. State process of a CCS with state-dependent failures 

 

 

5.3 Numerical study 

  For the CCS presented in this paper, in the table 1 are given 

the failure/repair data of the system components We notice 

that Tk
ij
 (the average utilization of the system of the k

th
 

resource in state (ij), Tk
ij
 = 1 since the utilization in each 

operational state is 100% for all  i, j, k, i = {0,1,2}, j = {0,1}, 

k = 4. The other notations used in table 1 are: f is the 

exponential failure rate of resources, r is the exponential 

repair rate of resources, Np is the required minimum number 

of operational machines in cell p, p = {1,2}, and np is the 

total number of machines in cell p. 

 

Table 1. Data for the numerical study 

 R F Np np Tk
ij 

Machines 1 0,05 1 2 1 

MHS 0,2 0,001 1 1 1 

 

 

From Fig.2 and Fig.3 we calculate the corresponding 

infinitesimal generators and after that, the probability vector 

of CTMC. With relation (10) we calculate the availability of 

CCS. The computational results are summarized in Table 2 

for the state process given in Fig.4 (CCS with 

time-dependent failures), and respectively in Table 3 for the 

state process given in Fig.5 (CCS with state-dependent 

failures). We consider the system operation over an interval 

of 24 hours (three consecutive shifts). 
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 Table 2. Computational results for the CCS in Fig.4 

Time hour Machines MHS System 

Availability 

0 1.0000 1.0000 1.0000 

1 0.9800 0.9548 0.9217 

4 0.9470 0.8645 0.7789 

8 0.9335 0.8061 0.7025 

12 0.9330 0.7810 0.6758 

16 0.9331 0.7701 0.6655 

20 0.9330 0.7654 0.6623 

24 0.9328 0.7648 0.6617 

 

 

Table 3. Computational results for the CCS in Fig.5 

Time hour Machines MHS System 

Availability 

0 1.0000 1.0000 1.0000 

1 0.9780 0.9528 0.9201 

4 0.9450 0.8628 0.7762 

8 0.9315 0.8039 0.7008 

12 0.9310 0.7798 0.6739 

16 0.9320 0.7688 0.6632 

20 0.9318 0.7639 0.6598 

24 0.9320 0.7636 0.6583 

 

The results of the availability analysis of the construction 

system are illustrated in Fig.4, which depicts the availability 

of the system as a function of the time.  The numbers x = 1, 2 

indicate the system in Fig.4, respectively Fig.5.  One can see 

from Fig.6 that the layout with CCS with time-dependent 

failures is superior to that with CCS with state-dependent 

failure. 

 

 

 

 

 

 

 

 

 

 

Fig.6 Availability analysis of the CCS 

         

6. CONCLUSIONS 

  In this paper we analysed the perturbation estimators in 

digital systems modelled with stochastic Petri nets (SPN`s). 

The approach presented in this paper (e.g., Stochastic 

Artificial Social Systems) can be used to analyze SPN`s that 

model complex dynamic system interactions. Unbiased 

gradient estimators proposed in [4], [6] were used for the 

sensitivity analysis of the GSMP representation and some 

practical solutions for attenuating the perturbations influences 

were indicated. The proposed procedure was imagined for a 

data network perturbation analysis. We estimate that this 

methodology can be applied to modelling and analysis of 

manufacturing systems, job scheduling in a chain 

management system, such as construction systems. Future 

research will focus to differential and fluid Petri nets in order 

on estimate throughput of complex systems. 

An analytical technique for the availability evaluation of the 

construction systems was presented. The novelty of the 

approach is that the construction of large Markov chains is 

not required. Using a structural decomposition, the 

construction system is divided into cells. For each cell a 

Markov model was derived and the probability was 

determined of at least Ni working machines in cell i, for i = 

1,2,..,n and j working material handling system (MHS) at 

time t, where Ni and j satisfy the system production capacity 

requirements. The model presented in this paper can be 

extended to include other components, e.g., tools, control 

systems. The results reported here can form the basis of 

several enhancements, such as conducting performance 

studies of with multiple part types.  
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