
SOFTWARE AGENT FOR DESIGN-BUILD PROCESS COOPERATION

Ming-Hsiu Tsai
Department of Construction Engineering

National Taiwan University of Science & Technology
#43,Sec.4,Keelung Rd.,Taipei,106,Taiwan,R.O.C

D8805103@mail.ntust.edu.tw

Min-Yuan Cheng
Department of Construction Engineering

National Taiwan University of Science & Technology
#43,Sec.4,Keelung Rd.,Taipei,106,Taiwan,R.O.C

myc@mail.ntust.edu.tw

Abstract: This paper describes a research project that attempt to develop a process integrating method and finally to create a
multi-agent system to support the cooperation in a design-build team. The approach taken is to apply Business Process
Reengineering (BPR) philosophy for providing a process-based fast-tracking execution mechanism for design-build teams.
An Integrated Design-Build Framework (IDBF) is proposed which consists of three layers; namely, (1) fast-tracking model,
(2) integrated process model and (3) design-build multi-agent system (DBMAS). Design-build projects are divided into
design-build modules with overlapping relationships firstly, and the specific integrated process model, then, is generated to be
the foundation of the performance of fast-tracking model. Finally, applying the multi-agent system technology, the DBMAS
is developed for assisting implementations of all processes embedded in design-build modules via information
sharing/exchanging and process controlling functions.

Keywords: design-build, fast-tracking, business process reengineering (BPR), multi-agent system (MAS), workflow.

1. INTNTEGRATED DESIGN-BUILD FRAMEWORK
 Design-bid-build (D/B/B) was the project delivery
process of choice for most of the twentieth century. By the
year 2000, traditional D/D/B was still used in nearly
two-thirds of projects in the United States [1], and a similar
situation prevailed in Taiwan. However, several problems
such as “differing goals of designer and constructor,”
“defects of lowest bid contracting,” and “segregation
between the work of the designer and the input of
constructors” bring anxiety when D/B/B methods are
applied in major construction projects of greater complexity.
For these reasons, design-build (D/B) has also been
considered an appropriate method for contracting in Taiwan.
 D/B is considered to be the fastest project delivery
system as it encourages fast-tracking of design and
construction phases. However, the design-builders’
unfamiliarity with the D/B process has decreased the
benefits of the D/B method in Taiwan. Not only the
front-end problem of defining user needs and translating
those needs into a facility program and technical
performance requirements has proved a wrinkle for owners,
but also changing adversarial processes to collaborative
ones for professional designers and general constructors is
critical for the design-build team. Furthermore, due to the
limitations of Taiwan laws and regulations, A/E and GC
keep to their own spheres, so that functional intervals
between them bring difficulties in cooperating as a D/B team
[5]. For these reasons, it is desirable to increase the
efficiency of cooperation and fast-tracking by the D/B team,
and toward that end this study aims to reengineer the
business processes across professional design (PD) and GC,
so that processes within a D/B team can be integrated into
more cooperative processes spanning organizational
boundaries. Hence, this research applies the Business
Process Reengineering (BPR) philosophy [4,6] and extends

it to the cross-organizational process to integrate
fast-tracking processes between PD and GC.
 Accordingly, by combining the fast-tracking mechanism
with the process reengineering philosophy, a project of the
Integrated Design-Build Framework (IDBF) was invoked in
2005 whose goal is to develop a process integrating method
and finally to create a multi-agent system to support the
cooperation in a design-build team. Since the IDBF is a
long-term project, a two-layer framework aimed at
fast-tracking model creation and performing was
preliminarily addressed in 2005 [5] (as shown on the top and
middle layers in Figure 1).

 Figure 1 Integrated design-build framework.
 The two-layer IDBF proposed a process-based
mechanism for fast-tracking construction implementation in
D/B projects. A D/B project can be divided into
design-build modules (DBMs) with their overlapping
relationships in its corresponding fast-tracking model.
Theoretically, each design-build module can be fulfilled by
its specific collaborative design and construction processes
in the integrated process model, the middle layer of the
IDBF. However, the complexity in practice, arising from the
performing of multiple processes, decreases the feasibility
of the two-layer IDBF. To overcome this defect, this paper
continuously develops the design-build multi-agent system

-335-

ISARC2006

(DBMAS, the bottom layer in Figure 1) for supporting the
implementation of multiple processes embedded in DBMs
so the original IDBF is extended as a three-layer framework.
Consequently, this paper is aimed at developing the
DBMAS based to the function requirements derived from
the fast-tracking model and integrated process model.

2. FAST-TRACKING MODEL

 The fast-tracking model is the preliminary for creating
IDBF because it is the goal for which the integrated
processes of the D/B team will perform. Based on the
fast-tracking model, the integrated process model can then
be determined. The purpose of the fast-tracking model is to
create a scheme to fast-track construction entities and
delineate their overlapping relationships. Generally, a
construction entity must be fulfilled through its design and
building activities. Accordingly, this study packages the
design and the building activities into a DBM corresponding
to a construction entity, and determines the concurrent
relationships among all design-build modules to overlap the
construction entities. To this end, based on the axiomatic
design methodology as shown in Figure 2, the concurrent
relationships of both design proposals (DPs) and of
construction process variables (CPVs) need to be
determined. By mapping a D/B project into customer,
functional, physical and process domains by zigzagging
decomposition and creating dependency matrices [5].

Figure 2 Four Domains in Axiomatic Design

 Figure 2 shows the mapping relationships of AD, in
which each domain consists of specific characteristic vectors
such as customer needs {CN}, functional requirements
{FR}, design proposal {DP} and construction process
variables {CPV}.

 Figure 3 Structural system DBM of the fast-tracking model of case study

 Figure 3 shows a partial fast-tracking model derived form
a case study, in which the related DBMs are connected with
the concurrent relationships so that it provides a guide map
for fast-tracking construction.

3. INTEGRATED PROCESS MODEL

 Each design-build module in the fast-tracking model is
fulfilled through executions of designer’s and of
constructor’s business processes. Therefore, this study
subsequently addresses a cross-organizational process
reengineering method to integrate processes in a D/B team,
since design-build process flows across two strategic
business units. To this end, the cross-organization process
reengineering method as shown in Figure 4 is addressed to
generate the integrated process model for facilitating
collaboration on the processes in a D/B project.

Figure 4 Cross-organizational process reengineering procedure

 Based on the input-operation-output paradigm, from an
information processing viewpoint, the cross-organization
collaborative links between activities/processes can be
determined to present the interoperability between two
organization’s processes. To identify the collaborative links,
this research applied semantic similarity analysis to evaluate
the data and function similarities between designer and GC’s
processes so the overlapping and coupling relationships
between then can be determined. Based on the determined
relationships, the integrated processes model can be created
as Figure 5 shows. The integrated process model depicts the
coupling processes and the information flows between
designer and GC in a D/B team, and can be applied to all
DBMs since it is an abstract process model. Therefore, by
specifying the particular input/output information to the
integrated process model corresponding to a DBM, the
model becomes the execution processes corresponding to
the DBM. Summarily, DBMs, in the fast-tracking model,
with their corresponding integrated processes present the
scheme of execution for fast-tracking construction in a D/B
project.

-336-

ISARC2006

Figure 5 Example of collaborative design process set in the integrated
process model

4. DBMAS DEVELOPEMNT

 The bottom layer of the IDBF is addressed as the
Design-Build Multi-Agent System (DBMAS) which is the
infrastructure for implementation of the fast-tracking model
and the integrated process model.
 The created fast-tracking model and the integrated
process model are both concept models and are difficultly
implemented due to their complexities. To overcome this
problem, the DBMAS is developed for automatic
implementation of the fast-tracking model and integrated
process model.
 Moreover, since the collaborative processes in the
integrated process model flow across two independent
organizations, the information of the collaborative processes
is distributed over heterogeneous information environment.
Consequently, the DBMAS needs the capability to exchange
data between the legacy systems without interference with
the functions of the original systems. Therefore, the
DBMAS needs (1) to proceed with the fast-tracking model
and manage the procedure of design-build modules’
executions, (2) to drive the collaborative processes of the
integrated process model to be executed by computer, and
(3) to dispatch activities to the corresponding actors and
acquire information form the original information system to
provide the consistent data to the actors. To these aims, this
research combines the Microsoft BizTalk Framework and
the multi-agent system philosophy for developing the
DBMAS, and Figure 6 shows the system architecture.
Basically, the system is composed of three modules; namely,
(1) XLANG process engine, (2) DBM management module
and (3) activity execution module.
 Firstly, the XLANG process engine is the core module of
the DBMAS, and it is developed based on the XLANG
specification which is an extension of web service
description language (WSDL) that defines the behavior and
orchestration of business processes [7,8]. All collaborative
processes embedded in DBMs are translated into their
corresponding XLANG files which are XML-based process
definition files, so that the XLANG process engine can drive
processes to be executed automatically according to the

input XLANG files. Secondly, the DBM management
module is responsible for controlling the execution statuses
of DBMs and collaborative processes. Two objects, the
“DBM manager” and the “process monitor”, are involved in
the DBM management module, where the DBM manager
can activate a new specific DBM according to the activated
DBMs’ achievement statuses. While a new DBM is
activated, the DBM manager will inform the process
monitor to generate and input the corresponding XLANG
process definition files to the process engine. Then, the
process monitor will communicate with the process engine
to continuously master conditions of the process executions.

Figure 6 The system architecture of DBMAS

 According to the inputted XLANG files, the process
engine is responsible for issuing starting messages of the
newly activated activities within the XLANG files to the
activity execution module and receiving the finished
messages from the activity execution module; i.e., the
XLANG process engine only drives processes, but the exact
processes performance relies on the activity execution
module to realize the activities of processes. To assist actors
with completing the dynamically activated activities and
acquire the corresponding necessary data are the primary
missions of the activity execution module. This study
developed the activity execution module based on the
multi-agent system philosophy due to its delegation and
autonomy characteristics. Thus, in the activity execution
module, activity agents and collaboration agents are
responsible for assisting the actors with the necessary
information; the data providing agent and the data acquiring
agents are assigned to acquire the necessary data from the
existing information systems or databases to activity agents.
Summarily, on the one hand the DBM management module
cooperates with the XLANG process engine to manage the
execution of the fast-tracking model and the integrated
process model; on the other hand the activity execution
module fulfills activities within the XLANG processes of an
activated DBM. The DBMAS can be implemented upon the
original information environment without interference with
the original information systems.

3.1 DBM Management Module
 The DBM management module is the control center of
the DBMAS. The primary target of this module is to manage

-337-

ISARC2006

the execution statuses of the all design-build modules within
the fast-tracking model. That is, activating design-build
modules and modifying their execution statuses are main
responsibilities of the DBM management module. As Figure
6 shows, the management module is composed of a DBM
manager, a process monitor and a DBM database. The DBM
database not only stores the DBM names and relationships
determined in the fast-tracking model, but also records the
execution statuses during the runtime of the system.
Therefore, the DBM manager can control the statuses of
design-build modules of a D/B project according to records
within the DBM database. Moreover, when a DBM is
determined to be activated, its collaborative design process
and construction process are needed to be invoked
subsequently. To this aim, the process monitor is assigned in
the DBM management module.

Figure 7 Controlling algorithm of DBM Manager

 Figure 7 shows the controlling algorithm of the DBM
manager. The DBM manager needs to create a DBM
execution set by querying the DBM database. All the
activated design-build modules will be involved in the DBM
execution set, and the DBM manager, then, can search the
database for all the related design-build modules to generate
the related DBM set corresponding to the current DBM
execution set. The related DBM set is composed of the
candidate design-build modules for being activated. The
manager needs to check the execution status of the DBM one
by one. Four execution statuses are applied for the DBM;
namely, (1) design-activated, (2) design-finished, (3)
construction-activated and (4) DBM-finished. The DBM

manager can activate a DBM’s collaborative design or
construction process according to the execution statuses of
the predecessor and the successor design-build modules and
their fast-tracking relationship. Completing the activation
task, the DBM manager finally modifies the execution
statuses of all design-build modules according to their
collaborative processes achievement statuses which are
provided by the process monitor.

Moreover, the process monitor is the bridge between
XLANG process engine and the DBM management module.
Two functions are assigned to the process monitor; namely,
(1) gathering the proceeding statuses of the processes in the
XLANG process engine and (2) generating the
corresponding XLAGN files of the activated DBM.
First, by calling the XLANGProcessManager container of
the XLANG process engine, the process manager can
receive the proceeding status of an activated process and
pass the status information to the DBM manager to be the
reference for the DBM status checking. Second, as the
collaborative process sets of a DBM needed to be activated,
informed by the DBM manager, the process monitor has to
generate the corresponding XLANG files and input the files
to the XLANG process engine.

Figure 8 (a) Example of XLANG diagram (b) XLANG file content

compiled from the XLANG diagram
 XLANG is the underlying orchestration language for
Microsoft BizTalk which is expected to serve as the basis for
automated protocol engines that can track the state of
executing process instances and help enforce protocol
correctness in message flows. Thus, to perform processes

-338-

ISARC2006

automatically, this study compiles the processes into the
executable XLANG process files and applies the XLANG
process engine to execute the complied processes.
 An XLANG process file is an XML-based description
file. Basically, four fundamental elements are used to
descript a process. Figure 8 shows a part of XLANG
diagram of the collaborative design process and its
corresponding XLANG file derived from the Figure 5.

In this research, the XLANG process file is applied to
send an activity’s starting information to the message
queuing center and receive its finishing information from the
message queuing center. Therefore, each activity in the
integrated process model will be mapped to two activities in
the XLANG process; i.e., one activity sends the starting
information, and the other receives the finished information.
Figure 8(a) shows the example of the “A1. Confirm with the
owner” activity. Following the XLANG diagram, the
XLANG process file can be generated as shown in the
Figure 8(b).

3.2 XLANG Process Engine

The XLANG process engine is the core of the DBMAS,
which is developed to drive XLANG processes. The primary
responsibilities of the XLANG process engine are
scheduling the executions of all activated processes and
persisting the long-running process. Therefore, seven
objects are involved in the XALNG process engine. Figure 9
shows the logic architecture of XLANG process engine.

Figure 9 Logic architecture of XLANG Process Engine

1. XLANGProcessManager: is core object of the XLANG

process engine because it not only parses the XLANG
files to an executable instance in the run time of the
system ,but also manage the process execution status in
the system

2. XLANGProcessCollection container and
XLANGProcess instance: The XLANGProcessManage
can parse XLANG files and create the corresponding
XLANGProcess instances to be executed in the process
engine. All the executing XLANGProcess instances need
to be stored in the XLANGProcessCollection container.
An XLANGProcess instance will be persisted to the
persistence database when it receives a timeout message,
which is called “Dehydration”. On the contrary, as
receiving the waiting message, the dehydration

XLANGProcess will be recovered by the
XLANGProcessManager, which is called “Rehydration”.

3. ActivityMSMQCollection container and ActivityMSMQ:

This study applies the Microsoft Message Queuing
(MSMQ) technique to be the message gateway between
the XLANG process engine and the software agents in the
activity execution module. The ActivityMSMQ is
responsible for passing the starting and the finished
messages of activities. On the one hand, as an activity
within an XLANGProcess is started, the
XLANGProcessManager will inform the ActivityMSMQ
to send a “activity Started” message to the MSMQ server
and request the “activity Finished” message while the
activity is finished; on the other hand the activity demon
will receive the “activityStarted” message from the
MSMQ server and will also inform the ActivityMSMQ to
send the “activity Finished” message to the MSMQ
server.

4. XLANGWaitMSMQCollection container and

XLANGWaitMSMQ: Like the mechanism of the
ActivityMSMQ, the XLANGWaitMSMQ is applied to
pass the “Rehydration” message between activity demon
and the XLANGProcessManager.

3.3 Activity Execution Module

The activity execution module is developed based on the
multi-agent system philosophy [9,10]. Figure 10 shows the
architecture of the activity execution module. Five agents
are developed in this module; namely, (1) activity demon,
(2) activity agent/s, (3) collation agent/s, (4) data providing
agent and (5) data acquiring agent/s. Besides, to collaborate
with the agents, a MAS server and an agent name server are
needed in this module.

Figure 10 Multi-agent system architecture of Activity Execution Module

 Agents will function according to the messages from the
other agents or systems. Therefore, this study applies the
Agent Communication Language (ACL) to be the
specification of the messages. Table 1 shows the
responsibilities of the objects in the activity execution
module.

-339-

ISARC2006

Table 1 Agent responsibility of the Activity Execution Module
Agent
Name Responsibility Communicate

with
MAS Server Collaborate with all agents and delegate

tasks. All other objects

Agent Name
Server

Register and record the invoked agent’s
information, such as ID, name, network
address and abilities.

1. MAS server

Activity
Demon

1. Acquire the activity starting message
form the activityMASQ of the XLANG
process engine.

2. Assign the activated activity to its actor
and invoke the corresponding activity
agent or collaboration agent.

1. MAS server
2. activityMSMQ
3. activity agents
4. collection agents

Activity
Agent

1. Provide a GUI for actors to interact
with the actors.

2. Provide the necessary data items
corresponding to one activity.

3. Submission of achievements of
activities

1. MAS server
2. activity demon
3. data providing

agent

Collaboratio
n Agent

Similar with the activity agent, but
collaboration is corresponding to the
collective activities in collective design
processes.

1. MAS server
2. activity demon
3. data providing

agent

Data
Providing

Agent

1. Receive the data requests from activity
agents and return the results.

2. Delegate data acquiring tasks to the
data acquiring agents.

1. MAS server
2. activity agents
3. collaboration

agents
Data

Acquiring
Agent

Acquire the specific data from the existing
information systems or databases of
professional design and GC.

1. data providing
agent

 Summarily, the DBMAS provides a platform for
execution of fast-tracking model and integrated process
model. On the one hand, the collaborative processes
embedded in DBMs can be performed as workflows so that
the statuses and results of process executions can be
monitored can controlled; on the other hand, the software
agents in the DBMAS integrate the designer and the GC’s
information systems based on the integrated process model.
Accordingly, the integration between designer and GC can
be fulfilled strategically based on IDBF.

5. CONCLUSION

The Integrated Design-Build Framework (IDBF)
provides a process-based mechanism for performing
fast-tracking construction. Three models are necessarily
created in the IDBF, namely, (1) the fast-tracking model, (2)
the integrated process model and (3) design-build
multi-agent system. Following the IDBF architecture, this
study purely aims at the integrated process model creation
and design-build multi-agent system development.

To realize design-build modules in the top layer of IDBF
smoothly, the integrated process model needs to be
generated. Based on the semantic similarity analysis, the
overlapping and coupling relationships between
professional design and GC’s organizations can be
identified; therefore, the collaborative processes of
integrated process model can then be generated. In short, the
integrated process model integrates the professional design
and GC’s processes into a set of collaborative processes
which can serve as a reference model for members of a
design-build team to cooperate with each other. In this way,
the double-waste efforts and redundant activities of
overlapping processes can be decreased.

However, the collaborative processes embedded in all
design-build modules will increase complexity in practice.
Thus, this study developed the design-build multi-agent
system to support the cooperation called for by integrated
process model and the fast-tracking model. To drive
processes and exchange data between two organizations, the
DBMAS is basically composed of a process driving engine
called XLANG process engine and an activity execution
module consisting software agents. On the one hand the
XLANG process engine is responsible for activating the
collaborative processes to be executed; on the other hand the
activity execution module is responsible for executing
activities within the activated processes via interacting with
actors and acquiring data from the existing information
systems and databases.

This research completes the development of the IDBF by
extending a design-build multi-agent system to the IDBF.
Thus, the fast-tracking model with its collaborative
processes can be implemented by the design-build
multi-agent system, and the feasibility of IDBF can
consequently be increased.

REFERENCES
[1] J.L. Beard, Design-build: planning through

development, New York : McGraw-Hill, 34-36, 2001.
[2] P. Huovila, L. Koskela, and M. Lautanala, “Fast or

concurrent: The art of getting construction improved”,
Proc. of 2nd Workshop on lean construction, Santiago,
Chile, 143-158, 1994.

[3] G. Williams, “Fast-track pros and cons: Considerations
for industrial projects”, Journal of management in
engineering, ASCE, 11(5), 24-32, 1995.

[4] M.Y. Cheng, M.H. Tsai, “Reengineering of Construction
Management Process”, J. Constr. Eng. Manage. 129(1),
105-114, 2003.

[5] M.Y. Cheng, M.H. Tsai, “Cross-Organizational Process
Integration in Design-Build Team”, Proc. Of The 22th
International Symposium on Automation and Robotics
in Construction, Ferrara Italy, 2005.

[6] M.Y. Cheng, M.H. Tsai, Z.W Xiao, “Construction
Management Process Reengineering: Organizational
Human Resource Planning for Multiple Projects”,
Automation in Construction, accepted on Oct.14, 2005.

[7] ”BizTalk Framework 2.0”,
http://www.microsoft.com/biztalk/techinfo/
BizTalkFramework20.doc

[8] “XLANG Web Services for Business process design”,
http://www.gotdotnet.com/team/xml_wsspecs/xlang-c/
default.htm

[9] A. Aldea, et al., “The scope of application of multi-agent
systems in the process industry: three case studies”,
Expert Systems with Applications, 26, 39-47, 2004.

[10] F. Bellifemine, et al., JADE Administrator’s GUIDE,
TILAB S.P.A., 2003

-340-

ISARC2006

	047

