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Abstract: An adaptive sliding mode controller for vibration control is proposed in this paper for structures embedded with 
magnetorheological (MR) dampers. Civil structures and buildings are liable to damages during earthquake periods. The 
application of structural control methodologies is important in order to suppress vibrations due to seismic phenomena and 
dynamic loading. The use of sliding mode control is accounted for by its robustness to system uncertainties and external 
disturbances while a MR damper is technologically-efficient for its vibration control and also fail-safe for an ideal semi-
active device. The control performance is enhanced by implementing an adaptive control law in estimating the system 
parameters. Simulation results are included to demonstrate the effectiveness of the proposed controller in a building model 
under earthquake-like excitations. 
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1. INTRODUCTION 

 
Earthquake is one of the several disasters which 

frequently occurs and gives rise to a lot of damages to civil 
structures. In order to protect these structures including 
buildings and their occupants, many engineers and 
researchers have been attracted to the investigation and 
development for effective approaches in structural control.  

A possible strategy to mitigate structural damages is to 
reduce their vibration magnitudes during an earthquake. 
With this regard, the use of active mass dampers and semi-
active dampers have been proposed and effectively 
operated in civil structures in more than a decade [1]-[3]. 
Furthermore, magnetorheological (MR) dampers, as semi-
active devices with the advantage of requiring little energy 
to operate [4], are becoming an attractive candidate in 
structural control with the incorporation of a suitable 
controller. 

There have been many controller design methods 
proposed for structural control, such as switching control, 
pole assignment, linear-quadratic-regulator (LQR) [5, 6]. 
In recent years, sliding mode control (SMC) has been 
introduced to this problem domain for its robustness 
against structural uncertainties, disturbances, actuator non-
linearities and hysteresis [7]-[10]. Recently, a quantised-
sliding mode controller, using MR dampers, was proposed 
for structural control [11]. The performance was improved 
but not preserved well over a large range of parametric 
variations. 

In this work, the robust control problem for civil 
structures under earthquake excitations is addressed by 
using the adaptive SMC methodology [12]-[15]. The SMC 
approach guarantees system robustness while the adaptive 
control law will enhance the system insensitivity to 
parametrised non-linearity and hysteresis arising from MR 
dampers.  

The paper is organized as follows. In Section 2, the 
physical characteristics of an MR damper are briefly 
described. In Section 3, the control system of a building 
structure is modelled using the motion equation consisting 
of non-linear inputs and disturbances. In Section 4 and 5, 
the control design and an adaptive algorithm are developed 
with the objective to generate the required damping force 
for the structure. In Section 6, numerical simulation for the 
system with MR dampers are presented to illustrate the 
effectiveness of the proposed control technique. Finally, 
Section 7 concludes the paper. 
 
2.  MAGNETORHEOLOGICAL DAMPER 

 
An MR damper contains nanoscale magnetizable 

particles suspended in a carrier ferro-fluid. Under the 
application of a magnetic field the particles are aligned in 
chain-like structures [16, 17], thus, producing controllable 
damping forces (see Fig. 1). There are many types of MR 
damper models available such as the Bingham viscous-
plastic model [18-20], the Bouc-Wen model [21], the 
modified Bouc-Wen model [4], and recently a model that 
is described by explicit expressions [22]. The latter is 
adopted here to result in simpler system dynamics suitable 
for the control design.  

The equations of the MR damper are presented as 

0 ,f cx kx z fα= + + +&     (1a) 
tanh( ( )),z x sign xβ δ= +&  (1b) 

where x is the damper diaphragm displacement, f  is the 
output force, z is the hysteresis function, 0f  is the damper 
force offset, 0.09β =  is a constant against the supplied 
current values, α  is the scaling parameter and ,  c k  are 
the viscous and stiffness coefficients. Parameters are 
described as functions of the supply current, i, as [22]: 
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1 0 3.32 0.78,c c i c i= + = +  (1c) 

1 0 3.97,k k i k i= + = − +  (1d) 
2 2

2 1 0 264 939.73 45.86,i i i iα α α α= + + = − + +  (1e) 

1 0 0.44 0.48,i iδ δ δ= + = +  (1f) 

0 1 0 18.21 256.50.f h i h i= + = − −  (1g) 
 

3. CONTROL OF CIVIL STRUCTURES 
 
Consider the system of an n-storey building structure 

subjected to earthquake excitation ( )gx t&&  as shown in Fig. 
2. The proposed control system, installed at the structure, 
consists of MR dampers, controller and current driver. 
When structural vibration is induced by earthquake ( )gx t&& , 
the controller with the current driver will excite the MR 
dampers and the forces f will be generated to eliminate the 
vibration of the structure. The responses to be regulated are 
the displacements, velocities, and accelerations ( x, x, x& && ) of 
the structure, where x  is the displacement of the floors. 

 
 
 
 
 
 
 
 
 
 

 
The equation of motion of the structure is  

( ) ( ) ( ) ( ) ( ),gt t t t x t+ + = Γ + ΛMx Cx Kx f M&& & &&  (2) 

where ,],..., [)( 21
T

nxxxt =x ( ) nt R∈x is an n-vector of the 
displacements, ( ) rt R∈f is a vector consisting of the 
control forces, ( )gx t&&  is the earthquake excitation 

acceleration, and matrices nxnR∈M , nxnR∈C , nxnR∈K  
are respectively the mass, damping and stiffness. Matrix 

nxrRΓ ∈  denotes the location of r  dampers, and nR∈Λ is 
a vector indicating the directional influence of the 
earthquake excitation.  

Equation (2) can be rewritten in the state-space form as  

0 0( ) ( ) ( ) ( ),t t t t= + +z Az B f E&  (3) 

where 2( ) nt R∈z  is the state vector, 2 2nx nR∈A  is the 
system matrix, 2

0
nxrR∈B  is a constant gain matrix and 

2
0 ( ) nt R∈E  is a disturbance vector, respectively. They are 

given by 

1 1( ) ,  ,t − −

⎡ ⎤ ⎡ ⎤
= =⎢ ⎥ ⎢ ⎥− −⎣ ⎦ ⎣ ⎦

x 0 I
z A

x M K M C&
 (4a) 

0 0,  ( ) ( ).gt x t−

⎡ ⎤ ⎡ ⎤
= =⎢ ⎥ ⎢ ⎥Γ⎣ ⎦ ⎣ ⎦

1

0 0
B E

M Λ
&&  (4b) 

From Eqs. (1a)-(1g) and with one MR damper, we can 
rewrite the force equation of the MR damper as 

,    
)()(

11

2
200001111

DiB
zizhxkxcizhxkxcf

+=
++++++++= ααα &&

 (5) 
where zhxkxcB 11111 α+++= & , and 

zizhxkxcD 2
200001 αα ++++= &  

are non-linear functions. 
Assume that the MR dampers are installed at r floors of 

the structure, the equation of the MR damper at floor j 
(j=1,2,…, r) can be rewritten as follows 

),,()( jjjjjjjj izxDixBf += , (6) 

or  
** DiBf += , (7) 

where rR∈f  is the vector of damping forces, rR∈i  is the 
vector of control currents, rR∈*D  and rrR ×∈*B  is a 
diagonal matrix. 

Substitution of Eq. (7) into Eq. (3) leads to the 
following 

0
**

0 )( EDiBBAzz +++=& . (8) 

The state space equation can be written as 

,= + +z Az Bi E&  (9) 

where BBBB Δ+=*
0 , 2nxrR∈B  is a known gain matrix, 

BiEDBE Δ++= 0
*

0 , and 2nR∈E  is the vector of 
unknown disturbance.  
 
4. SLIDING MODE CONTROL 

The main advantage of the SMC is its robustness 
against variations in system parameters or external 
disturbance. The selection of the control gain is related to 
the magnitude of uncertainty in order to keep the trajectory 
on the sliding surface. For simplicity, let rRσ ∈  be an r-
dimensional sliding function consisting of a linear 
combination of the state variables, i.e. 

,σ = Sz  (10) 

where 2rx nR∈S  is a matrix to be determined such that the 
motion on the sliding surface 0σ =  is stable.  

Fig. 1. Schematic of the MR damper 
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The controller output i consists of two components 

,e s= +i i i  (11) 

where ei  and si  are respectively the equivalent control 
and the switching control. 

Assuming the availability of the state vector z(t), and 
the controllability of the system (A,B), by defining a cost 
function  

,
T

dt= ∫J z Qz  (12) 

then upon the choice of a positive definite matrix Q , one 
can obtain the LQR gain F  [6], from which the sliding 
matrix S can be derived to result in the equivalent control  

.e = −i Fz  (13) 

Indeed, by neglecting the disturbance E, and 
substitution of eii =  into the time derivative of the sliding 
function, one has 

)( eBiAzSzS +== &&σ ,  (14) 

from which condition 0=σ&  yields  
1( ) .e

−= −i SB SAz  (15) 

Thus matrix S can be chosen [9] such that the equivalent 
dynamics in the sliding mode will satisfy the optimal 
criterion (12). Now, in order to design the switching 
control, let us first assume the following matching 
conditions: 

BεE =   and  Eρ≤ε ,    (16) 

where 0>Eρ  is a known positive value.  

Consider the Lyapunov function σσ T
aV 5.0= . 

Substituting eqs. (9) and (11) into its time derivative gives 

( )

   ( ( ) )

   ( ) ( ),

T
a

T
e s

T T
e s

V σ
σ
σ σ

= + +

= + + +

= + + +

S Az Bi E

S Az B i i E

S Az Bi S Bi E

&

  

where ( ) 0T
eσ + =S Az Bi  as of (15). Thus, from (16) one 

has  

E
T

s
T

s
T

aV ρσσσ SBSBiεiSB +≤+= )(& . (17) 

To satisfy the sliding condition 0<= σσ && T
aV , the 

switching control is proposed as 

BS
SBi

T

TT

s
σ

σρ−= , (18) 

where Eρρ >  is a known control gain. The selection of 
this control gain depends on the expected uncertainty in the 
unknown disturbance, with a trade-off between the 

robustness property of the controller and the chattering 
effect due to the discontinuity of the switching law (18).  

 
5. ADAPTIVE SLIDING MODE CONTROL 

 
In the control of quake-induced structures, as 

parametric uncertainties and external disturbances are very 
difficult to expect or estimate, a large value of the control 
gain ρ  is most likely selected, resulting in an unnecessary 
deviation from the sliding surface, a large magnitude of 
discontinuity in the control gain and hence associated 
difficulties in implementation of the controller. Therefore, 
an appropriate mechanism to adjust the control gain can 
help addressing this problem. Among available techniques 
for tuning the discontinuous control signal, an on-line 
adjustment of the control gain with a self-tuning adaptive 
law seems to be suitable. For this, Fig. 3 shows the system 
block diagram illustrating this idea.  

 
 
 
 
 
 
 
 
 
 
 

 
The SMC law (11) will be used, where the equivalent 

control is given by (15) and the switching control (18) is 
now using the estimate )(ˆ tρ  of the control gain ρ , i.e. 

BS
SBi

T

TT

s
σ

σρ̂−= , (19) 

where )(ˆ tρ  is subject to the adaptive law 

BSTt σγρ 1)(ˆ −=& ,    (20) 

and γ >0 is the adaptation gain. 
By introducing the gain error  

ρρρ −= )(ˆ)(~ tt ,    (21) 

and using the Lyapunov function  

)~(5.0 2ργσσ += TV ,    (22) 

with the notice that ρρ && ˆ~ = , one can obtain 

.)ˆ()(    

)~~(

BSεiSB T
s

T

TV

σρρσ

ρργσσ

−++=

+= &&&
   

Now substitution of the adaptive switching control law 
(19) in the above equation for the time derivative of the 
Lyapunov function gives 

Building 

Fig. 3. Block diagram with adaptive sliding mode 
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(23)            ),(   

)ˆ(ˆ

εBSBSSBε

BSSBε
BS

SSBB

−−≤−=

−++−=

ρσσρσ

σρρσ
σ

σσρ

TTT

TT
T

TTT
V&

which results in 0<V&  according to assumption (16) and 
the selection Eρρ > .  

From (23), as BSSBεz TTtV σρσ −=),(&  is negative 

semi-definite and ),( tV z  is lower bounded, if ),( tV z&  is 
uniformly continuous in time, as is the case for structural 
systems with MR dampers using model (9), then according 
to Barbalat’s lemma, 0),( →tV z&  as ∞→t . Thus,  

0)/(lim =−
∞→

BSSBεSBSz TTTTT

t
σσρ , and hence, 

0→z  as ∞→t . Note that for a convergence of the 
estimated value )(ˆ tρ  to the upper bound ρ , the so-called 
persistent excitation condition [12] should be satisfied. 
 
6. SIMULATION RESULTS 
 

Consider the structure of a five-storey building model 
which has two MR dampers installed at the first floor and 
the second floor as shown in Fig. 4, 1 2 3 4 5[ ,  , , , ]Tx x x x x=x  
is the displacement vector, 1f  and 2f are forces of these 
MR damper and parameters ii , km , ic )5,...,2,1( =i  are 
mass, damping and stiffness coefficients, respectively.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

The corresponding matrices M, C, and Κ  are as 
follows 

337 0 0 0 0
0 330 0 0 0
0 0 330 0 0
0 0 0 330 0
0 0 0 0 337

kg,

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

M   

225 157 26 7 2
157 300 126 25 4

,26 126 299 156 16
7 25 156 279 125

2 4 16 125 125

Ns
m

− −⎡ ⎤
⎢ ⎥− − −⎢ ⎥
⎢ ⎥= − −
⎢ ⎥− − −⎢ ⎥
⎢ ⎥− −⎣ ⎦

C
  

3766 2869 467 234 27
2869 5149 2959 446 70

.467 2959 5233 2836 280
234 446 2836 4763 2277
27 70 280 2277 2052

kN
m

− −⎡ ⎤
⎢ ⎥− − −⎢ ⎥
⎢ ⎥= − −
⎢ ⎥− − −⎢ ⎥
⎢ ⎥− −⎣ ⎦

K
  

Accelerations 1x&&  and 2x&&  corresponding to these MR 
dampers installed at the building are 

1 01 1 1 01x A B f E= + +&&   
    01 1 1 1 1 01( )A  B h i D E= + + +    
    01 1 1 1 1 1 01A  B h i B D E= + + +  
    01 1 1 1 1,A B h i E= + +  

2 02 2 2 02x A B f E= + +&&   
    02 2 2 2 2 02( )A  B h i D E= + + +    
    02 2 2 2 2 2 02A  B h i B D E= + + +    
    02 2 2 2 2 ,A B h i E= + +   

where  
-1

01 1 1 2 1 2 2 1 2 1 2 2(( ) ( ) ),A m k k x k x c c x c x= − + − + + −& &    

-1
02 1 1 2 1 2 2 1 2 1 2 2(( ) ( ) ),A m k k x k x c c x c x= − + − + + −& &    

 1 1 1 01,E B D E= + 2 2 2 02 ,E B D E= +   

1E  and 2E  are respectively first-floor and second-floor 
disturbances, while 1B  and 2B  are current gains. Control 
parameters are given in Table 1. 
 

Table 1: Control parameters  
SMC Adaptive SMC Damper No. 

ρ  ρ  γ  

1 650 500 1 
2 1.5 0.45 [0.1; -0.5] 

 
Time responses of floor displacements are shown in the 

Figs. 5-12. Shown in Fig. 5 is the El-Centro earthquake 
record. Fig. 6 is for the floor displacement without control. 
Fig. 7 and Fig. 8 are the floor displacements using SMC 
and adaptive sliding mode control (ASMC) for one MR 
damper installed at the 1st floor, respectively. Fig. 9 and 
Fig. 10 are floor displacements using SMC and ASMC for 
two MR dampers installed at the 1st and 2nd floor. Fig. 11 
and Fig.12 are control forces 1,f 2f  of the MR dampers 
installed at floor-1 and floor-2. In addition, Table 2 
summarises numerical results of cases such as 
uncontrolled, SMC-1 MR damper, ASMC-1 MR damper, 
SMC-2 MR dampers, ASMC-2 MR damper. It is observed 
that using ASMC with 2 MR dampers installed at the 1st 
and 2nd floor give the most satisfactory results. 

Fig. 4. The building model with 2 MR dampers 
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   Fig. 5. Earthquake record: El-Centro 
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  Fig. 9. Floor displacement using SMC-2 MR dampers 

0 10 20 30 40 50 60
-0.01

-0.008

-0.006

-0.004

-0.002

0

0.002

0.004

0.006

0.008

0.01

Time(s)

Fl
oo
r d
is
pl
ac
em

en
t(m

)

 
   Fig. 6. Floor displacement-uncontrolled   
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  Fig. 10. Floor displacement using ASMC-2 MR dampers 
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   Fig. 7. Floor displacement using SMC-1 MR damper      
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   Fig. 11. Control force of MR damper at first-floor 
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   Fig. 8. Floor displacement using ASMC-1 MR damper     

0 10 20 30 40 50 60

-1

-0.5

0

0.5

1

x 104

Time(s)

C
on
tro
l f
or
ce
(N
)- 
 f2

 Second Floor: El-Centro

 
   Fig. 12. Control force of MR damper at second-floor 

Table 2. Floor displacements from different controls 
 Uncontrolled SMC-1 damper ASMC-1 damper SMC-2 dampers ASMC-2 dampers 

Floor 
No. 

Max 
(mm) 

RMS 
(mm) 

Max 
(mm) 

RMS 
(mm) 

Max 
(mm) 

RMS 
(mm) 

Max 
(mm) 

RMS 
(mm) 

Max 
(mm) 

RMS 
(mm) 

1 6.3 2.2 3.0 0.20 3.3 0.23 2.8 0.40 2.5 0.35 
2 9.0 1.7 3.8 0.41 3.4 0.28 3.0 0.50 3.1 0.45 
3 12.0 2.0 4.0 0.38 3.2 0.27 3.3 0.60 3.4 0.50 
4 13.5 2.2 5.1 0.39 5.0 0.30 4.3 0.60 4.2 0.50 
5 13.5 2.3 5.1 0.37 5.0 0.32 4.2 0.52 4.1 0.47 

 
 
7. CONCLUSION 

 
An adaptive sliding mode controller has been proposed 

to for semi-active control of civil engineering structures, 
embedded with magnetorheological dampers, under a 
dynamic loading source such as earthquake excitations. 
While SMC is robust to system uncertainties and 
disturbances, the performance of the system under control 
is enhanced by adaptively estimating the control gain.  The 
system stability is proved on the basis of the Lyapunov 
stability theory. Extensive simulation results from applying  

 

 
the proposed controller to a five-storey model building 
have illustrated the effectiveness of the proposed method. 
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