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Abstract: The problem of coordinating construction vehicles in formations is tackled using the particle swarm optimization 
algorithm. Coordinated multi-vehicles are anticipated to outperform single vehicles in terms of economy and flexibility. A 
possible approach is to apply control theoretic methods to vehicle coordination but this may require complicated system 
models to be employed. The particle swarm optimization (PSO) algorithm adopted in this work, as an evolutionary 
computation based methodology, is able to provide a near-optimal solution without the need for a precise system model. The 
control commands for the vehicles are treated as particles in a swarm and a sequence of controls is derived to achieve the 
desired formation. With regard to inter-vehicle collision avoidances, behaviour-based control strategies are incorporated into 
the formation framework. Simulations for multi-vehicle formation in a construction site scenario are conducted to illustrate 
the effectiveness of the proposed approach. 
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1. INTRODUCTION 
 

As human civilisation develops, more and more civil 
structures are being built at an ever increasing pace. The 
application of robotics in automating the construction 
process may become an important component in the future 
development of construction technologies. Tasks assigned 
to and performed by robots during a construction process 
can be broadly classified into floor finishing, board 
installation, exterior painting, material handling and 
delivery, to name a few [1]. Mobile robots or vehicles are 
very attractive in these application paradigms and, in 
particular, multi-vehicles will outperform a single robot 
when operating in the coordinated manner in terms of 
flexibility and economy. 

One of the critical issues in deploying vehicles in 
construction sites rests on their navigational abilities [2], 
particularly, with severe spatial constraints and this naturally 
leads to the need for formation controls [3]. With this regard, 
control theoretic [4][5], behaviour-based [6] and A*-based 
searching [7] approaches have been applied. In the former 
approach, control designs would be very challenging as 
precise descriptions or models of the system are required, 
e.g., in a close-form or differentiable expression, and special 
consideration may be needed to account for numerical 
instabilities. On the other hand, the latter approaches require 
expert design knowledge and behaviours are mostly 
determined in a problem dependent manner.  

Alternative methodologies for path planning or 
formation control, such as soft-computing and evolutionary 
computation free from the above mentioned burdens, have 
increasingly drawn the attentions of researchers and 
engineers in recent years. For example, a neural network, 
applying the self-learning principle, was employed in the 
floor coverage problem scenario [8] in constructions. 

However, the coordination of multi-vehicles was not within 
the scope of the research work described there. Fuzzy logic 
based approaches for vehicle path planning were reported in 
[9] for cases of navigation of a single vehicle in construction 
sites but multi-vehicle coordination issues were also not 
addressed. In [10], the Ant system algorithm was employed 
for its natural representation of vehicles as ants and the 
major focus of the work therein was on the allocation of job 
schedules with regard to vehicle coordinations. 
Furthermore, the multi-agent concept implemented with 
genetic algorithms (GA) was reported in [11][12], where the 
problem domain addressed was on roadside following for 
vehicle navigation. In essence, vehicles were treated as 
living species evolving by adaptation to natural selections 
imposed by the constraints from the kerb boundaries. 
However, one of the hurdles in applying the GA is the 
determination of the many control parameters, e.g., selection 
schemes and crossover/mutation probabilities, during the 
algorithmic design stage. 

From an alternative point of view, the collective motion 
of vehicles can be treated as an aggregation of microscopic 
particles evolving through the solid and liquid phases [13] 
with a balance between diffusion and cohesion. This analogy 
thus inspires another form of evolutionary computation, 
namely, the particle swarm optimisation (PSO) algorithm 
[14] for its simplicity and promising performance in wide 
application areas. The principle of PSO is based on the 
exchange of social knowledge and personal experiences 
among the individuals (particles) in the swarm. Specifically, 
the algorithm operates by coding potential solutions as 
individual particles and simulates bird flocks or fish schools 
moving across the solution space. A solution is produced as 
the best particle in the swarm. The PSO algorithm has been 
used in robot path planning [15], navigation [16] and many 
other design optimisation problems.  
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In this work, the PSO algorithm is employed in the 
multi-vehicle formation control paradigm. This method will 
be applied for the coordination of the motions of 
construction vehicles, assuming the available information of 
the locations of the vehicles, in a construction site where 
there are severe spatial constraints. Speed and steering 
commands for the vehicles are derived from the PSO 
algorithm in order to establish the required formation. 
Moreover, to avoid inter-vehicle collisions during the 
formation initialization, behaviour-based control schemes 
are applied for its ease in design and promising 
performances. 

The rest of the paper is structured as follows. In Section 
2, the vehicle coordination problem is briefly reviewed and 
the particle swarm optimisation algorithm is introduced in 
Section 3. In Section 4, the proposed approach is developed 
and simulation results are presented in Section 5. Finally, a 
conclusion is drawn in Section 6. 

 
2. VEHICLE COORDINATION CONTROL 
 

The problem scenario considered is that construction 
vehicles are deployed for material delivery, navigating 
through constrained spaces and in task dependent 
formations such as lines, columns or wedges and others. 
Furthermore, the formation parameters may be time-varying 
as the task requires. 

Let the motion of the vehicles under coordination control 
be described by the following motion model, 
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where i
k 1+x  is the state of the ith vehicle at time k+1 

consisting of its xy-coordinate and orientation φ  with 

respect to the x-axis, i
ku  is the control containing the 

velocity i
kv ,  steering rate i

kγ  and T  is the sampling time. 
The goal of vehicle coordination is to derive a sequence 

of controls for each vehicle, i.e., 
 { }i

k
i uuu ,,0 L=           (2) 

such that the trajectories  
 { }i

k
i xxx ,,0 L=           (3) 

followed by the vehicles are attracted to the desired ones of a 
formation determined by a high-level path planner. 

These controls can be obtained by applying control 
theoretic approaches [4][5], behaviour-based schemes [6] or 
A*-based architecture [7]. However, the need to avoid 
inter-vehicle collisions and obstacles may increase the 
system complexity, computational load and give rise to 
numerical instabilities. Therefore, an evolutionary 
computation technique, the particle swarm optimization 
algorithm is adopted for its simplicity and flexibility. 

3. PARTICLE SWARM OPTIMIZATION 
 

The particle swarm optimization (PSO) algorithm can be 
viewed as an agent based heuristic search method where 
potential solutions are coded as particles. The algorithm 
contains a recursive iteration loop (generations) and can be 
described by the following pseudo code. 

 
1. Initialize particles randomly across the 

solution space 

2. Set generation count to zero 

3. While not terminate 

3.1. Evaluate the particle fitness 
3.2. Find the best particle 
3.3. Find the best instances of particles 

against generations 

3.4. Calculate particle velocities 
3.5. Update particle locations 
3.6. Increase generation count 

4. Terminate if generation count expires. 

 

In the context of vehicle coordination, the vehicle speeds 
and steering commands are coded as particles,  

{ } PpIiv
Ti

kp
i

kp
i

kp LL ,1 ,,1 ,, ,,, === γu ,   (4) 
where p  is the particle index and i is the index for a vehicle.  

The particles in the solution space are allowed to move 
with arbitrary velocities (which is distinguished from the 
vehicle speeds). The initial particle velocities may be all set 
to zero or random numbers. In subsequent generations, the 
velocities are determined as 

)ˆ()( ,,2,,1,1,
i

jp
i

jp
ii

jp
i

jg
ii

jp
i

jp w uucuucvv −+−+=+ , 
              (5) 

where  w  is a weighting factor representing the momentum 
of the particle, [ ]maxmin21 ,),( cccc ∈  are uniform random 

numbers denoting as the gain factors, i
jg,u  (group-best) is 

the particle that gives the best performance within the swarm 
at the jth generation, i

jp,û  (personal-best) is the best 
performing instance of the pth particle over the past 
generations. The momentum weighting factor determines 
the randomness in the search for solutions, while the gain 
factors are responsible for the rate of convergence to the 
optimum solution. 

Assuming a unity sampling time step, the particle 
locations in the solution space are updated in the next 
generation as 

i
jp

i
jp

i
jp 1,,1, ++ += vuu .        (6) 

The algorithm then iterates through a pre-determined 
number of generations and the best particle i

jg,u  at the 

terminating generation j  is used in controlling the ith 
vehicle to move to its next location from time k to k+1 by 
letting i

jg
i
k ,uu ← . 
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4. PROPOSED APPROACH 
 

In this paper, the coordination of multi-vehicles into 
formations is achieved by combining the PSO algorithm and 
the behaviour-based motion strategy in deriving the motion 
commands as well as avoiding inter-vehicle collisions. 

 
4.1 Particle Structure 
 

Let there be m vehicles to be coordinated, hence, there 
are m sequences of control commands to be determined by 
the PSO. The approach adopted assumes that a high-level 
path planner is available to design the required formation 
and each vehicle knows it current location. This gives a set 
of formation locations or virtual vehicles as 

{ } mfyxFFF Tff
fm ,,1  ,},{  ,,1 LL ===F , (7) 

where each formation location contains its corresponding 
xy-coordinates and the orientations are aligned with the 
x-axis. On the other hand, the initial locations of the vehicles 
are not specified (i.e., not in a formation) but their locations 
are known to the PSO algorithm. 

The control commands are represented by a set of 
control particles. Note that there are I vehicles each also 
contains a set of P location particles describing the possible 
locations of vehicles. At each time step, the control particles 
are used to move the vehicles according to the motion model 
(Eq. 1). The predicted vehicle locations are shown in Fig. 1. 
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Fig. 1 – Predicted vehicle locations according to the speed 
and steering commands determined by particles. 

 
4.2 Vehicle-Formation Indexing 
 

In order to follow a formation, vehicles need to be 
allocated an index corresponding to the virtual vehicles in 
the formation. At the start of the formation with the available 
knowledge on the virtual formation and vehicle locations, a 
cross-correspondence distance table is formed by 
calculating the distances 

22 )()( ififfi yyxxd −+−= ,     (8) 
where the superscript f denotes the formation and i denotes 
the vehicle. Then, for each vehicle, find the minimum 
distance to the virtual vehicle and assign the correspondence 
index.  
 { }fi

f
fi ddfi minˆ if , =↔ .       (9) 

By adopting this indexing scheme, the initial distances 
between the real and virtual vehicles are minimized. 
Consequently, the time taken to reach the formation may be 
reduced. 

 
4.3 Formation Strategy 
 

The formation of vehicles into platoons is treated as a 
tracking problem. Due to the non-holonomic constraints of 
the vehicles they cannot turn abruptly. First, the distances 
between the vehicle particles and the virtual vehicles are 
calculated, giving fi

p
fi
p yx ΔΔ ,  respectively. Assume that the 

formation is required to move along the x-axis from left to 
right (it is straightforward to generalize to other formation 
movements as it is assumed to be performed by a high-level 
path planner). The strategy adopted is to assign a pseudo 
target behind the virtual vehicle such that the vehicle chases 
and tracks the formation. The pseudo target is given by 

),(sign05.0

85.0
fi
p

fifi
p

vi
p

fifi
p

vi
p

ydyy

dxx

Δ−Δ=Δ

−Δ=Δ
     (10) 

where superscript v denotes the target vehicles. The factors 
0.85 and 0.05 are scales determined experimentally. By 
examining the expressions above, it is revealed that the 
pseudo target will approach the virtual vehicle when the real 
vehicle is moving into the vicinity of the formation 
where 0→fid  and, thus, provides a smooth tracking. 
 
4.4 Particle Fitness 
 

The PSO algorithm relies on the determination of 
relative fitness values among the particles where the 
group-best and personal-best particles are obtained. The 
fitness function is an aggregation of the vehicle-formation 
distance and the vehicle-formation angular separation. The 
distances were as in Eq. 8, giving fi

pd  on a particle basis, 
while the angular separation is given by 

))/((tan 1 Lxy vi
p

vi
p

i
p

fi
p +ΔΔ−= −φθ ,    (11) 

where L is the vehicle length. Here, each angle is referred to 
the angular separation between a vehicle particle to that of a 
virtual vehicle. The fitness value for each vehicle particle is 
given as 

fi
p

fi
p

fi
p df θ+= .        (12) 

The group-best fitness is obtained from 
}{maxˆ fi

p
p

fi
g ff = .         (13) 

Similarly, the personal-best fitness is  
}{maxˆ

,,
fi

jpj
fi

jp ff = ,         (14) 

determined from the history of the fitness of the pth particle 
up to the jth generation. 

Finally, these fitness values are used in calculating the 
particle velocities and updating their locations in the 
solution space (see Section 3). 
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4.5 Control Bounds 
 

Since the PSO is a heuristic search method, the speed 
and steering commands derived may be infeasible for typical 
vehicles that exceed their kinematic or dynamic limitations. 
Therefore, the control signals should be bounded or 
clamped. Taking this into account, the values of the control 
particles are assigned as 

.0 if ,0

  if ,

,,

max,max,

<←

>←
i

kp
i

kp

i
kp

i
kp

vv

vvvv
      (15) 

That is, the vehicle is not allowed to travel backward in 
normal formation for smooth motions. Similarly, the 
steering command is bounded in magnitude as 

 
. if ,

 if ,

max,max,

max,max,

γγγγ

γγγγ

−<−←

>←

i
kp

i
kp

i
kp

i
kp

     (16) 

 
4.6 Inter-vehicle Collision Avoidance 
 

The path required to reach the next vehicle location may 
introduce collisions between vehicles, since collision was 
not considered in the PSO routines. Therefore, a collision 
avoidance strategy is developed to mitigate this drawback. 

For each vehicle located at i
kx  at time k, calculate the 

distances between other vehicles, i.e., 
22 )()( ijijji yyxxd −+−= ,     (17) 

which is a 2-dimensional array of distances. Similarly, 
calculate the angular separation between vehicles as 

( ))/()(tan 1 ijijji xxyy −−= −θ .     (18) 
For each vehicle i, find the distance to their associated 

virtual formation vehicle, 
22 )()( ii

f
ii

f
ii yyxxf −+−= .     (19) 

Check for the collision condition defined as 
)3/|(|    )05.05.2( πθ <∧+< jiiiji fLd ,   (20) 

where L is the length of the vehicle, ∧  is the logical and 
operator. The scale factors, 2.5, 0.05 and 3/π , determining 
the relative importance of the inter-vehicle separations in 
distance and orientation, are obtained experimentally. Fig. 2 
shows the situation when collision occurs. 

−60 −55 −50 −45 −40 −35 −30 −25 −20
−60

−55

−50

−45

−40

−35

−30

−25

−20

x(m)

y(
m

)

blocking
vehicle 3

blocked
vehicle 1

 
Fig. 2 – Inter-vehicle collision. Vehicle 1 blocks vehicle 3 
(marked by a circle). 

A potential collision is then declared between vehicles i 
and j when they are close to each other and one of the 
vehicles is in front of and blocks the other. This condition 
has taken into account for a dynamic threshold depending on 
the degree of formation completion where the risk of 
collision diminishes when the vehicles are in the formation, 
i.e., 0→iif . 

For the colliding vehicles, their reactive movements are 
frozen temporarily for a time step. Their locations become 

j
k

j
k

i
k

i
k xxxx == ++ 11   , .        (30) 

 
4.7 Dead-lock Release 

 
The inter-vehicle collision avoidance strategy adopted 

may give rise to dead-lock conditions, especially when the 
vehicles are moving towards each other (both in front and 
block the other). A release of the dead-lock condition is 
proposed as follows. 

During the collision avoidance stage, a list of colliding 
vehicle index pairing is maintained. For example, let 
vehicles 1 and 3 are temporarily frozen, the list will read as 

⎭
⎬
⎫

⎩
⎨
⎧

=
13
31

fzL ,          (31) 

which signifies that vehicle 1 blocks vehicle 3 and the 
reverse also holds, thus, producing a dead-lock. 

If the number of paired entries in the list is more than 
one, the list is searched for duplicated vehicle indices. 
Following the above example and applying the proposed 
strategy, vehicle 1 will be driven backward using a random 
speed and a random steering angle. Furthermore, the 
corresponding entry in the dead-lock list is removed. The 
procedure then repeats for other dead-locked vehicle 
pairings such that multiple dead-locks are subsequently 
removed. 

 
5. RESULTS 
 

The proposed vehicle coordination framework for 
formation initialization and control, using PSO and the 
incorporation of behavioural control for collision avoidance, 
is applied in simulations for different types formations and 
each case has a different set of initial vehicle locations. The 
simulation conditions are listed below. 

 
Table I - Types of formations 

Case Formation 
1 Column 
2 Wedge 

 
Table II - Initial vehicle locations 

Case Initial location 
1 Left hand regions in a column 
2 Upper-left region randomly located 
3 Lower-left region randomly located 
4 Randomly located across the site boundary 
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Consider seven vehicles that are homogeneous with each 
vehicle having measures mm 23 ×  in length and width. Let 
the construction site be bounded, e.g., m70±  in the 
xy-coordinates. The formation starts at the centre, 0=x . 
The initial vehicle locations are chosen arbitrarily, in 
accordance to the cases listed in Table II, and their 
orientations are also initialized randomly. The formation 
moves from left to right (increasing x-coordinate) and the 
formation is allowed to change dynamically. The last virtual 
vehicle (located at the most negative y-coordinate) moves in 
a higher speed than the first virtual vehicle. 

In the column formation, trajectories of the vehicles are 
shown in Fig. 3a through 3d. Irrespective of the vehicle 
starting locations and the dynamically adjustment of the 
formation, the vehicles follow the formation closely. It is 
also illustrated that the trajectories are smooth and the 
formation virtual vehicles are well tracked. This observation 
has verified the satisfactory performances provided by the 
proposed PSO algorithm. The trajectories although indicate 
some crossovers, however, they are separated in the time 
domain where the inter-vehicle collision avoidance 
procedure has been operating effectively. Notably, as shown 
in the lower-left region of Fig. 3c, one of the vehicle 
trajectories contains a rather sharp change. This is caused by 
the blocked vehicle that moved backward in order to avoid 
inter-vehicle collision and dead-lock. 

For the wedge formation case, similar levels of 
performances are also observed from the plots in Fig. 4. It is 
noted that the successful establishment of the desired 
formation, from the initial vehicle locations, is independent 
on the type of the desired formation (column vs. wedge). 
Furthermore, the tracking of virtual vehicles is 
formation-independent and the trajectory complexity is also 
not related to the type of formation. In general, the proposed 
approach can be straight forwardly extended to cases of a 
larger number of vehicles and inhomogeneous vehicle sizes. 
 
6. CONCLUSION 
 
A particle swarm optimisation (PSO) algorithm has been 
proposed for the formation control of vehicles deployed in 
construction sites. Sequences of vehicle speed and steering 
commands are derived from the PSO that can drive the 
vehicles to follow near-optimal trajectories leading to a 
formation. An interesting feature here is that the formation 
parameters can be time-varying. The collisions between 
vehicles are avoided by using a behaviour-based strategy. 
Simulation results for various initial vehicle locations and 
formations have demonstrated the effectiveness of the 
proposed approach. 
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Fig. 3 – Results for COLUMN formation. (a) Vehicles started from left, (b) vehicles started from upper-left region, (c) vehicles started from lower-left 
region, (d) vehicles started in distributed regions. The formation changes from their initial form (shown as empty triangles) with increasing vehicle speeds 
to the final formation (shown in black triangles). 
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Fig. 4 – Results for WEDGE formation. (a) Vehicles started from left, (b) vehicles started from upper-left region, (c) vehicles started from lower-left region, 
(d) vehicles started in distributed regions. The formation changes from their initial form (shown as empty triangles) with increasing vehicle speeds to the 
final formation (shown in black triangles). 
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