
USING DSM AND fmGA TO DETERMINE THE OPTIMAL DESIGN PROCESS
FOR ENGINEERING DESIGN PROJECTS

Chung-Wei Feng, Associate Professor
Dept. of Civil Engineering

National Cheng Kung University
No.1, Ta-Hsueh Road, Tainan 701, Taiwan

cfeng@mail.ncku.edu.tw

Yu-Chuan Yeh, Ph.D Candidate
Dept. of Civil Engineering

National Cheng Kung University
No.1, Ta-Hsueh Road, Tainan 701, Taiwan

whaly.yeh@msa.hinet.net

Abstract: The quality of the design has been recognized as one of the key factors to the success of the engineering project.
However, engineers need to repeatedly perform design tasks, such as processing information, to produce an appropriate
design result. Such a design process involves many activities and lead into one or several iterative loops. Consequently, the
sequence of performing design activities should be properly planned to avoid unnecessary loops. Design Structure Matrix
(DSM) is one of the widely used methods to describe the design process. By employing DSM, the relationships and the
sequence of the design activities can be identified. In this research, several principles of evaluating the design process are
developed. In addition, fast messy Genetic Algorithm (fmGA) is employed along with the proposed evaluation principles and
DSM to determine the optimal design process. Results show, based on the proposed evaluation principles, the impact of the
iteration loops can be clearly identified. Furthermore, with the proposed optimization model and its computer
implementation, engineers can find the optimal design process for the large-scale design project efficiently and effectively.

Keywords: Design Planning, Optimization, DSM, fmGA

1. INTRODUCTION

The design phase is one of the most important stages of
the engineering project. To effectively and efficiently
perform the activities within the design phase, the project
manager must carefully plan the design process. Therefore,
project managers usually have to first understand the
relationships between activities within the design process
and then develop a suitable design process based on these
relationships. However, the information used in the design
activities are usually interdependent, engineers have to make
some assumptions before performing related design tasks.
For example, to design a certain structure of the building,
some presumed loading conditions must be developed first.
These conditions will further be checked and modified if
needed during the process of designing the structure.
Because of the interrelationships between activities, the
design teams may be trapped within the loops of design
activities due to poor information flow and the inappropriate
allocation of resources. Consequently, the size of repeating
loops, which is number of activities within the loop, plays an
important role in terms of the efficiency and effectiveness of
the design process. There have been many techniques
developed to determine the optimal design process. Among
them, Design Structure Matrix (DSM) is one of the widely
used techniques to identify the relationships between
activities within the design process. By employing DSM, the
relationships between activities and the effectiveness of the
design process can be identified. However, since the number
of activities within the design process could be numerous, a
searching algorithm should be employed to determine the
optimal design process. In this research, several principles to
evaluate the design process are developed. In addition, fast
messy Genetic Algorithm (fmGA) is employed along with

the proposed evaluation principles and DSM to determine
the optimal design process. Results show, based on the
proposed evaluation principles, the impact of the iteration
loops can be clearly identified. Furthermore, with the
proposed optimization model and its computer
implementation, engineers can find the optimal design
process for the large-scale design project efficiently and
effectively.

2. DESIGN STRUCTURE MATRIX

Design structure matrix (DSM) was proposed by
Steward [1] in 1981. Many researchers have successfully
applied DSM to solve the complex design process in the last
decade [2][3][4][5][6][7][8]. DSM first divides the design
project into n individual activities in an n x n matrix which
contains n rows and columns. Information links among
individual activities are clearly shown by the systematic
mapping, regardless of number of activities. Figure 1 is an
example of DSM.

X

X

X

X X

X

A1

A2

A3

A4

A5

A6

A7

A8

A9

A10

A1 A2 A3 A4 A5 A6 A7 A8 A9 A10

Figure 1. Design Structure Matrix

-90-

ISARC2006

DSM is also referred as the Dependency Structure
Matrix reflecting its application outside design. Rogers et al.
[9] proposed a distinct format of DSM, as shown in Figure 2,
to identify the information flow and the interrelationships
among activities. In this format of DSM, interesting and
useful information can be discovered. Couplings in the
upper triangle portion of the DSM represent feedforward
data; couplings in the lower triangle part of the matrix
represent feedback data. A feedback implied an iterative
process in which an initial guess must be made. In addition,
crossover occurs when feedback from one activity to another
activity without exchanging data through the intersection.
Iteration loops exist when activities are within the
feedfowards and then feedbacks situation, for example,
activity G and H form an iteration loop

Figure 2. Another format of DSM

Feedforwards, feedbacks, crossovers, and iteration loops
are good indications for evaluating design processes. This
research employs the

3. FAST MESSY GENETIC ALGORITHMS

The fast messy genetic algorithms (fmGA) were
developed by Goldberg et al. in 1993 [10]. Unlike the
well-known simple genetic algorithms (sGA)”, which uses
fixed-length strings to represent possible solutions, the
fmGA applies messy chromosomes to form strings of
various lengths. The fmGA can efficiently find the optimal
solution of the large-scale permutation problem [11]. In
addition, the GA-based approach has been known for its
flexibility in hybridizing with other methodologies to obtain
better solutions [11]. Since the departing time of each truck
assigned to various construction sites is obtained by
simulating the delivering process, the fmGA is adopted to
integrate with the simulation methodology to find the
dispatching sequence of the optimal dispatching schedule in
this study. The elements and the process of the fmGA are
briefly described in the following:

3.1 messy representation

In the fmGA, genes of a chromosome are represented by
the pair (allele locus, allele value), in which allele locus
indicates the position of the gene and allele value represents
the value of the gene in that position. For example, two
messy chromosomes ((5 0)(1 0)(3 1)(4 1)(2 1)(4 0)(5 1) and
(3 1)(1 1)(5 0) may be both equivalent to the binary string
01110. As the above example shows, messy chromosomes
may be “over-specified” and “underspecified” in terms of
encoding bid-wise strings. Chromosome S1 is an
over-specified string which has two different values in the
positions of genes 1, 4, and 5. To evaluate the over-specified
chromosome like S1, the string may be scanned from left to
right with the first-come-first-serve rule. On the other hand,
for evaluating the underspecified chromosome, such as S2,
the competitive template is used. The competitive template
is a problem-specified and fixed-bit string that is randomly
generated or the solution found so far within the searching
process.

3.2 messy operators

Messy operators that include the cut-splice operator and
the mutation operator are used as genetic operators in the
fmGA. The cut-splice operator, similar to the crossover
operator in the sGA, is used to recombine different strings to
create new strings. For example, as shown in Figure 3, a cut
at point 3 would result in strings ((2 0)(5 0)(3 1)) and ((6
0)(5 1)). The splice operator joins two strings with a
specified splice probability Ps. For example, as shown in
Figure 3, two strings ((2 0)(5 0)(3 1)(6 0)(5 1)) and ((1 1)(2
1)(4 1)) would be recombined to ((2 0)(5 0)(3 1)(4 1)) and
((1 1)(2 1)(6 0)(5 1)) after being cut and spliced.

Figure 3. Cut-splice operator

The mutation operator perturbs the allele values of the
messy chromosome by switching them from 1 to 0 and vice
versa with a predefined probability Pm, which is similar to
the mutation operator used in the sGA.

3.3 organization of the fmGA

There are two loops, the outer loop and the inner loop,
within the fmGA. The outer loop iterates over the order k of
the processed Building Blocks (BBs). Every cycle of the
outer loop is denoted as an era. When a new era starts, the

-91-

ISARC2006

inner loop which includes the initialization phase, the
primordial phase, and the juxtapositional phase is invoked.
The goal of the initialization phase is to create a population
of strings containing all possible BBs of the order k. The
primordial phase filters out the “bad” genes not belonging to
BBs so that the population encloses a high proportion of
“good” genes belong to BBs. Two operations, the
building-block filtering and the thresholding selection, are
performed within the primordial phase. In the
juxtapositional phase, those good genes are combined by
using the selection and the messy operators to form a high
quality generation which perhaps contains the optimal
solution. When the inner loop of the fmGA terminates, the
outer loop of the fmGA begins with processing the BBs of
order k+1. In addition, the competitive template is replaced
by the best solution found so far, which becomes the new
competitive template for the next era. The whole process is
repeated until the maximum number required kmax is
reached. The organization of the fmGA is shown in Figure 4.

Figure 4. Organization of the fmGA

4. THE POPOSED MODEL

In this section, the proposed model that includes the
evaluation of the design process and the application of the
fmGA is presented.

4.1 Evaluation principles

In this research, the design process is evaluated
according to three steps. The evaluation process is described
as follows:

Step one: Defining information factors (IF). In this
research, the IF is used to determine the level of the
information dependency between two information related
activities. The IF can be treated as the weight between 0 and
1. In addition, from the result of Austin [4], IF is determined
according to (1) how dependent the activity is on the
information; (2) how sensitive the activity is to the change of

the information; and (3) how easily the information can be
estimated. The larger the IF is, the more important the
information flow is.

Step 2: Identifying feedbacks. According to the
definition of feedback, the feedbacks of the DSM are
identified and will be used to calculate the feedback factor
for further analysis. Figure 5 is a DSM with six feedbacks.

Figure 5. A DSM with 6 feedbacks

Step 3: Calculating feedback factor (FF). After the
feedbacks are identified, the FFs can be calculated. First, the
information flow trees have to be identified. The rules for
developing information flow tree are stated as follow:

1. Initial point of the information flow tree is the earliest
activity that feedbacks information.

2. Information flow three grows according to information
links within the DSM. In addition, only the activities
that are performed before the initial point are the
candidate nodes could grow.

3. Information flow tree stops developing when (1) the
current node has no further information dependent
activities (2) the growing path is repeated.

Figure 6 shows two examples to demonstrate the
development of the information flow three. Figure 7
presents the information flow trees of the Figure 6. In Figure
6 (a), only activities 4 and 5 have feedbacks to other
activities. Therefore, there are two the information flow
trees start from activity 4 and 5, respectively. In Figure 7(a),
the information flow tree starts from activity 4 develops to
activity 1 and then activity 2. This information flow tree
then stops growing because activity 2 has no succeeding
information related activities. Similarly the information flow
tree starts from activity 5 develops to activity 2 and then
stops In Figure 6 (b), the information flow tree stars from
activity 4 and 5, respectively. The information flow three
starts from activity 4 and grows to activity 1 and then stops
since activity 5 is not the candidate nodes, as shown in

1

2
3 4

5

6

-92-

ISARC2006

Figure 7 (b). On the other hand, the information flow tree
starts with activity 5 and grows to activities 3, 4, 1, and then
stops at activity 5 because of the growing path is repeated.

(a) (b)

Figure 6. DSM

(a)

(b)

Figure 7. Information flow threes

As the information flow tree can be identified, the FF can
be calculated by incorporating the IFs on the information
flow tree. The feedback factor of the information flow tree is
the sum of the IFs on the information flow tree and IFs on the
feedbacks if the information flow tree has iterative loops.

FFij  IFmn  IFmn
IFfeedbacks,
if iterative loop
exists


IFinformation flow tree

Eq.1

where

i is the initial point and j is the end point of the information
flow three.
m and n are activities linked by information dependency.

In addition, the total feedback factor of the design
process is defined as the sum of all feedbacks, as shown in
Eq. 2.





feedbacksFF

ijFFTFF ………………….……………..Eq. 2

For example, the FF of the Figure 7 (a) can be calculated by

124141 IFIFFF 

5252 IFFF 
and

5212415241 IFIFIFFFFFTFF 

If 5.041 IF ; 7.012 IF ; 3.052 IF
then

5.13.07.05.0521241  IFIFIFTFF

For the design process in Figure 6 (b),

4141 IFFF 
 41531541345353 IFIFIFIFIFIFFF 

and

153453415341 23 IFIFIFIFFFFFTFF 
If 3.041 IF ; 5.053 IF ; 2.034 IF ; 6.015 IF
then

7.26.02.05.023.03

23 15345341



 IFIFIFIFTFF

4.2 The application of the fmGA

The design process can be defined as the permutation of
the activities in terms of the execution order; therefore the
chromosome structure should be able to represent the all
possible permutations of activities. Figure 8 shows the
chromosome structure used in this research. Two numbers
are applied to depict the messy gene. The first number, from
the left side, determines the position of the gene in the coded
string, and the second number represents the activity index.
Since the messy string could be over-specified or
underspecified, the possible permutations could all be
represented by this chromosome representation.

Figure 8. The chromosome structure

In addition, total feedback factors (TFF) of each design
process is used for determine the fitness of the string
generated by fmGA. Since the number of iterative loops
should be minimized, the fitness function is defined as Eq. 3.

Min 



feedbacksFF

ijFFTFF …………………………Eq. 3

5. CASE STUDY

Along with development of the proposed model, a
computer implementation called Design Project Process
Optimizer (DPPO) is built. Figure 9 is the interface of the

-93-

ISARC2006

DPPO. As shown in Figure 9, there four modules which are
Project Information, Activity Relationship, Optimization
Process, and Result, within the DPPO. Project Information,
as shown in Figure 9 (a), allows users to enter
activity-related information of different projects. Activity
Relationship, as shown in Figure 9 (b), provides users to
input the information links between activities. Optimization
Process, as shown in Figure 9 (c), requires users to input the
parameters of fmGA. Users can then perform the
optimization of the design process when the parameters are
input. In addition, the convergence process as fmGA
optimizing the design process can be monitored in this
module. In Result, the optimal sequence of performing
design activities is provided. Users can also obtain the
information of critical tasks and important information
regarding the design process for management purpose.

(a)

(b)

(c)

(d)

Figure 9. Interface of DPPO

A design process which contains ten activities is
presented to verify the proposed model. Table 1 shows the
information dependency and the information factors
between activities of the design project under test. The test
was conducted on the computer equipped with Pentium 4 3.2
GHz and 1G RAM. The result of this case study is shown in
Figure 10. As Figure 10 depicts, the iterative loops within
the design process is minimized. In addition, since the IFs
provide the important of the information flow, the
information flow with high weight is arranged as
feedforward in stead of feedback. For example, the
information flows from activity 3 to activity 1 and from
activity to activity 7 are all arranged as the feedforwards
since these two information flows has the highest weights.

-94-

ISARC2006

Table 1 Information dependency and IF of the test example

Receiver Provider IF Receiver Provider IF

A2 A1 0.3 A10 A6 0.6
A3 A1 0.2 A1 A7 1
A3 A2 0.2 A4 A7 0.5
A6 A2 0.8 A5 A8 0.5
A1 A3 1 A10 A8 0.9
A5 A3 0.4 A1 A9 0.3
A8 A3 0.6 A2 A9 0.3
A9 A4 0.6 A7 A9 0.4
A8 A5 0.5 A6 A10 0.6
A5 A6 0.7

Figure 10. The result of the test example

6. CONCLUSIONS

This paper presents a model that integrate DSM and
fmGA to the optimize design process for the large-scale
design project. Three main contributions can be discovered
from this study. First, the impact of the iterative loops
within the design process can be clearly identified and
reduced. Second, since the weight of each information flow
can be identified, the information flows with high weights
are arranged as feedforwards instead of feedbacks. Third,
with the development of the computer implementation,
project manager can effectively and efficiently optimize the
design process.

ACKNOWLEDGEMENTS

This work was supported by the National Science
Council, Taiwan under Grant No. NSC 94-2211-E-006-082.

REFERENCES

[1] Steward, D. V. (1981). Systems analysis and
management: Structure, strategy, and design.
Princeton, NJ: Petrocelli.

[2] Austin, S., Baldwin, A., and Newton, A (1996). “A
data flow model to plan and manage the building
design process.” Journal of Engineering Design, 7(1),
3-25.

[3] Austin, S., Baldwin, A., Li, B., and Waskett, P.(1999).
“Analytical Design Planning Technique: a Model of
the Detailed Building Design Process.” Design
Studies, 20, 279-296.

[4] Austin, S., Baldwin, A., Li, B., and Waskett, P.(2000).
“Analytical Design Planning Technique(ADePT): a
Dependency Structure Matrix tool to Schedule the
Building Design Process.”Construction Management
and Economics, 18, 173-182.

[5] Bloebaum, C. L. (1995). “Coupling Strength-based
System Reduction for Complex Engineering Design.”
Structural Optimization, 10, 113-121.

[6] Browning T. R. (2001). “Applying the Design
Structure Matrix to System Decomposition and
Integration Problems: A Review and New
Directions.” Transactions on Engineering
Management, IEEE, 48(3), 292-306.

[7] Chen, S. J., and Lin L. (2003). “Decomposition of
interdependent task group for concurrent
engineering.” Computers and Industrial Engineering,
44, 435-459.

[8] Choo, H. J., Hamoond, J., Tommelein, I.D., Austin, S.
A., and Ballard, G. (2004). “DePlan: a Tool for
Integrated Design Management.” Automation in
Construction, 13, 313-326.

[9] Rogers, J. L. (1989). “DeMAID- a design manager’s
aide for intelligent decomposition user’s guide.”
NASA TM 101575.

[10] Goldberg, D. E., Deb, K., Kargupta, H., and Harik, G.
(1993). “Rapid Accurate Optimization of Difficult
Problems Using Fast Messy Genetic Algorithms.”
Proceedings of the Fifth International Conference on
Genetic Algorithms, 56-64.

[11] Knjazew, D. (2003). OmeGA: A competent genetic
algorithm for solving permutation and scheduling
problems, Kluwer Academic Publishers, Boston,
London.

-95-

ISARC2006

	079

