ISARC2006

CONTROL ARCHITECTURE CHARACTERISTICS FOR INTELLIGENCE IN
AUTONOMOUS MOBILE CONSTRUCTION ROBOTS

Rahee Agate*
Engineering Dept.
Lancaster University
UK, LA1 4YW
r.agate@lancaster.ac.uk

Derek W. Seward
Engineering Dept.
Lancaster University
UK, LAT 4YW

Abstract:

C. Pace

Manufacturing Dept
University of Malta

Mohmed.J. Bakari
Engineering Dept.
Lancaster University
UK, LAT 4YW

This paper details the implementation of a hierarchical control architecture based on the Real-time Control System-Reference
Model Architecture (RCS-RMA)[1][2], for autonomous operation of mobile construction robots. The RCS-RMA framework
offers a structure for developing intelligent autonomous behaviour. This paper extends the use of this framework by
suggesting an approach to embedding different types of control models within the framework, so as to achieve the desired
operational characteristics at different decision-making levels and under diverse operational circumstances. Various control
methods can be used as tools for reaching a decision at a given level. The paper presents a typical multi-level architecture for
a mobile robot which can be used for wide range of applications, including an autonomous construction robot. It is suggested
that the use of different control methods is more appropriate than using a single approach at all levels of the hierarchy.

Keywords: RCS -RMA, Mobile robot, POMDP, PID

1. INTRODUCTION

The idea behind this paper is to suggest an approach for
designing the robotic systems so as to make them more
flexible, efficient and reliable. It is argued that one control
methods at all levels of a hierarchical architectural scheme
may not be the best. Use of a particular control method
appropriate at a given level may make the system better and
effective. Real time control system- reference model
architecture (RCS-RMA) [2] is used as a hierarchical
architectural framework.

2.REAL-TIME CONTROL SYSTEM REFERENCE
MODEL ARCHITECTURE (RCS-RMA)

2.1 Robot Architectures

Architectural structure can be defined as the method by
which a system is divided into subsystems, and how those
subsystems interact with each other and with the external
world to reach the set goal. A system 'architecture’ primarily
refers to the software and hardware framework for
controlling the system. Architectural style refers to the
computational concepts that underlie a given system. In the

last decade, a number of system architectures have evolved
[3].

Architectural styles described in the technical literature can
be classified into three categories: deliberative, behavioural,
and hybrid. A deliberative architecture tends to adopt a
top-down hierarchical command structure often using
reasoning based on extensive models or maps of the world.
A behavioural architecture, on the other hand, tends to be
based on simple low-level sense/act loops. The hybrid style
combines both reactive and deliberative control in a
heterogeneous architecture. It facilitates the design of
efficient low-level control with a connection to high-level
reasoning. RCS[2] (Real-time Control System) is a hybrid
architecture in that it combines deliberative with reactive
components. The approach was developed at the N.I.S.T.
(National Institute of Standards and Technology) laboratory
in the USA and has been applied to a wide range of
intelligent systems.

RCS partitions the control problem into four basic
Functional Elements (see below) along with sensors and
actuators. RCS clusters these elements into computational
nodes that have responsibility for specific subsystems and
arrange these nodes in hierarchical layers such that each
layer has characteristic functionality and timing. Each layer
provides a rich and dynamic world model and a sensory
processing hierarchy to keep the world model up to date.

-846-

The RCS reference model architecture has a systematic
regularity and recursive structure expressed in a canonical
form that provides a basis for an engineering methodology

(2]

Elements[1][2]: are the fundamental
processes from which the system is

Functional
computational
composed.
“The functional elements of RCS reference model
architecture are sensory processing (SP), World modelling
(WM), value judgment (VJ), and behaviour generation
(BG).

Value Judgment (VJ)

It is a process that
a) Computes cost, risk, and benefit of actions and plans.
b) Estimates the importance and value of objects, events,
and situations.
c) Assesses the reliability of information.
d) Calculates the rewarding or punishing effects of
perceived states and events.

World Modelling (WM)

A functional process that constructs, maintains, and uses a
world model knowledge database (KD) in support of
behaviour generation and sensory processing.

World modelling performs four principle functions:

a) It predicts (possibly with several hypotheses) sensory
observations based on the estimated state of the world.
Predicted signals can be used by sensory processing
to configure filters, masks, windows, and schema for
correlation, model matching, recursive estimation,
and focusing attention.

b) It generates and maintains a best estimate of the state
of the world that can be used for controlling current
actions and planning future behaviour. This best
estimate resides in a knowledge database describing
the state and attributes of objects, events, classes,
agents, situations, and relationships. This knowledge
database has both iconic and symbolic structures and
both short and long-term components.

c) It acts as a database server in response to queries for
information stored in the knowledge database.

d) It simulates results of possible future plans based on
the estimated state of the world and planned actions.
Simulated results are evaluated by the value judgment
system to select the best plan for execution.

Behaviour Generation (BG)

The planning and control of actions intended to achieve or
maintain behavioural goals.

Behavioural goal: a desired result that a behaviour is
intended to achieve or maintain.

Desired result: a result that value judgment evaluates as
desirable or beneficial.

ISARC2006

Command: a name, a commanded action, and a command
goal. Both commanded action and command goal may
include parameters.

Sensory processing (SP)

A set of processes by which sensory data interact with prior
knowledge to detect and recognize useful information about
the world.

The RCS Computational Node:[2]

A RCS NODE is an organizational unit of a RCS system
that processes sensory information, computes values,
maintains a world model, generates predictions, formulates
plans, and executes tasks.

Figure 1 illustrates the relationships within a single
RCS _NODE of the RCS architecture. Each RCS NODE
contains BG, WM, SP, and VJ processes, plus a knowledge
database (KD). Any or all of the processes within a node
may communicate with an operator interface. The
interconnections between sensory processing, world
modelling, and behaviour generation close a reactive
feedback control loop between sensory measurements and
commanded action. The interconnections between
behaviour generation, world modelling, and value judgment
enable deliberative planning and reasoning about future
actions. The interconnections between sensory processing,
world modelling, and value judgment enable knowledge
acquisition, situation evaluation, and learning.

Within sensory processing, observed input from sensors and
lower level nodes is compared with predictions generated by
world modelling. Differences between observations and
predictions are used by world modelling to update the
knowledge database.

- _Operator
- interface
Sensory output T - A
//
I
|

o Value -7
S Jadgement_ -~] 9 @
) P o % E g
Peer input G o A o | =3 H
[5) S @ @
output D] S0 %, | =5
~ - = 8 °(;6 | 2|
= 8 52 % 2|
B H 8 i
g = 98
-7 > % v
4" Update Plan
Sensory }—> World Model-
Pr i >
Predicted database State
input
. i
Observed input fowey le:i’;er&
Mogy, h_nworlu

snels

Sensory input
Commanded

action

Figure 1 RCS_NODE [2]

Each RCS_NODE looks upward to a higher level node from
which it takes commands, for which it provides sensory
information, and to which it reports status. Each
RCS_NODE also looks downward to one or more lower
level nodes to which it issues commands, and from which it
accepts sensory information and status. Each RCS NODE
may also communicate with peer nodes with which it
exchanges information. A collection of RCS computational

-847-

nodes such as illustrated in figure 1 can be used to construct
a distributed hierarchical reference model architecture.

Each RCS NODE acts as an operational unit in an
intelligent system. Depending on where a particular
RCS _NODE resides in the hierarchy, it might serve as a
controller for one or more actuators, a subsystem, an
individual machine, a group of machines comprising a
manufacturing workstation, a group of workstations
comprising a manufacturing cell, or a group of cells
comprising a manufacturing shop. The functionality of each
RCS NODE can be implemented by a set of software
processes or by a person or group of persons.

3. IMPLEMENTATION OF DIFFERENT CONTROL
METHODS WITHIN HIERARCHICAL
ARCHITECTURE

3.1 Need for different control methods

In hierarchical architectures, the application is decomposed
into subtasks and subtasks to further sub-subtasks. The
whole task is represented as a hierarchical architecture.
Every level has to deal with different task or subtask. Every
level has different subsystem/subsystems. The top level has
to deal with planning and as such it needs lower resolution,
but wider scope. It’s perception about the world is on a
larger scale and as such not too much detail. In other words,
we can say that the world model at this level is world-centric.

As one goes down the hierarchy, levels become more and
more reactive and less and less deliberative. Lower levels
thus need to have an ego-centric world model
representation. Scope of the lower levels is narrower but the
resolution is higher. They don’t participate in the decision
making process as much as the higher levels. They are
specifically responsible for the actual physical action
generation. In this regard they need to deal with the robot’s
immediate surroundings and any obstacle which is within its
peripheral range. They have to make sure that the system
actually produces behaviours precisely and smoothly.
Whereas, the higher levels are responsible for decision
making and planning. They do not generate the actual
physical action but rather plan and command the lower level
to perform this planned action .

Each level has different task/subtask to complete. Higher
levels plan while lower levels perform. As such the control
methods required at each level can be different. It can be
argued that each control method is not the best suitable for
every task/subtask at all the levels. All features of any
method may not be utilised at all the levels due to the task the
level has to complete. On the other hand it is possible that
some methods do not offer sufficient features. E.g. the PID
control method is not suitable for higher levels. But it is
suitable as the lower level controller where feedback is
required to ensure smooth operation. But it does not meet the

ISARC2006

demands of higher levels where planning and decision
making takes place. In summary the hierarchical nature of
the architecture can be visualised by considering the upper
level WM to offer a world-centric representation, low in
resolution but large in scope, providing a general picture of
the construction site within which the robot moves. At the
lower levels, the WM will take the form of an egocentric
representation allowing the system to evaluate its current
state and interaction with its immediate environment such
that the robotic system can be considered stationary within a
dynamic world. Given the variation in control requirements
and scope within the architectural hierarchy, it is believed
that the mode of control at each RCS level (and also at
intra-level nodes) must adapt according to the characteristics
that define that specific level of decision-making.

3.2 Role of RCS-RMA for implementation of different
control methods [4]

In the past few decades various techniques, based on, for
example, lead-lag compensation, PID control, optimal
control, feedback linearization, adaptive control, robust
control, fuzzy logic, neural networks, and so on, have been
developed for control of linear and nonlinear plants.
However these methods are typically not sufficient to
achieve the levels and types of automation that are currently
desired for more sophisticated and complex systems. There
is often a need for more sophisticated algorithms, or ‘hybrid’
combinations of the foregoing algorithms, which can also,
for instance, predict and prevent or compensate for faults,
control the ‘discrete event’ part of the plant, and generally
coordinate complex sequences of behaviours of a system. If
the system is physically distributed, there is often a need for
distributed controllers and hence communications between,
and coordination of, the subsystem controllers to achieve
overall performance objectives. Also, in many applications
it is often convenient to break complex tasks down into
simpler subtasks which can be implemented using low-level
numerical algorithms (such as some of those listed above),
provided that there is a ° supervisor’ to coordinate the
activities so that the overall task is achieved. The need for
supervision of controller functions, the distributed nature of
many systems, and the need in many systems for an interface
to a human user (e.g. for monitoring and specifying system
goals) leads to a hierarchical structure for a controller. An
example of a hierarchical structure is shown in figure 2 (this
is sometimes called the organizational hierarchy of the
controller). In this diagram the boxes represent different
modules of the controller, each assigned a different task (or
subtask), and the lines represent communication links. The
diagram is organized into layers (levels) where the upper
level holds the operator interface if needed, the lower level
typically holds traditional control functions that interface to
different parts of the system via sensors and actuators , and
the middle level typically holds modules that coordinate the
actions of the low-level algorithms and carry out the actions
planned by the upper level. The middle level is the one
which has the decision making capacity.

RCS is a generalized architecture for intelligent systems,
providing a hierarchical breakdown of tasks and control
activities. Rising up the control hierarchy from low-level
servo-control of individual joints to strategic planning of the
whole task, the spatial resolution reduces and the time
horizon increases.

4. MOBILE ROBOTS IN CONSTRUCTION

The application under consideration here is a mobile robot
which can be employed for various purposes, one of them
being as an excavator on a construction site. As the focus of
this research is on the development of the mobile robot ,
navigation and safety issues are primarily considered. Other
issues such as digging, moving objects etc are not
considered at this point. A 4-layer robot architecture (figure
2) employing different control methods is described in
greater detail in this section.

4.1 RCS design Methodology

The RCS design methodology [4] is employed in order to
structure the organizational hierarchy. Task decomposition
is performed so as to decide the splitting of tasks at the
higher level into subtasks at lower levels. It also helps the
designer to identify the tasks or operations that the whole
system performs and which task is performed by which
actuator(s) or subsystem(s).

TO PLAN SHORTEST AND QUICKEST PATH

TO AVOID OBSTACLES AND NAVIGATE ROBOT
SAFELY

TO DETECT OBSTACLES TO CONTROL THE TRACK MOVEMENTS

Figure 2: Task Decomposition Analysis.

Once the tasks and subtasks are assigned to various levels,
the controller architecture is defined. For defining the
hierarchical architecture[4], the first and most important
thing to consider is the layout of the physical subsystems and
all the actuators and sensors of the system to be controlled.
Each subsystem will have its own sensors and actuators
(although these won’t be unique to a specific subsystem).
Then, based on the physical layout of the subsystems, the

ISARC2006

connections between them, the information flow, and the
task decomposition analysis performed in the previous step,
we define the controller architecture. This typically starts
with assigning a control module to each actuator and sensor
on the bottom of the hierarchy.

Consequently diverse control methods are needed to be used
within RCS to achieve the desired operational goal and to
provide the required level of autonomy. Furthermore, the
control model applied at each control level must suit the
representation and management of uncertainty, given the
control resolution and scope of that level.

The following control and decision-making strategies are
thus proposed for integration within an RCS framework
(figure 3):

- A PIP/PID controller is considered to be the most
appropriate at the lowest level consisting of sensors,
actuators and their servo-feedback loops, providing a
minimum level for handling uncertainty.

- At an intermediate level of control, it is argued that
Partially Observable Markov Decision Processes (POMDP)
offers a suitable structure for developing desired control
strategies allowing the mapping of the functional elements,
viz, SP, WM, VJ and BG, onto specific components of the
POMDP itself. This mapping provides the means of
ensuring the appropriate interaction between these elements
of the control level, providing a coherent controller
behaviour and decision-making process which succeeds in
managing the uncertainty present at such a level of control.

- Other techniques based on downhill algorithm based path
planning[5] algorithms are more appropriate at the higher
planning levels.

POMDP with less uncertainty LEVEL3
NAVIGATION MANAGER OPERATOR

INTERFACE

POMDP Based Control

TRACK CONTROLLER LEVEL 2

PID / PIP Control

L L

OBJECT LEVEL 1
DETECTION SERVO CONTROL

| |

‘ SENSORS AND ACTUATORS

‘ LEVEL 0

Lower Level Control

Figure 3: Control Hierarchy of Mobile Robot Architecture

-849-

Figure 3 is explained in greater details in this section:

Level 3: Nav_Manager Module.

The task of this level is to plan the path. This level can be
said to be responsible for ‘strategic planning’. It has most
deliberative in nature and least reactive in all the layers .

It consists of a grid-based dynamic path planning algorithm.
This level ensures that the task gets completed in the most
cost-effective and time-effective manner. The algorithm
plans the path which is optimally safe .It avoids the obstacles
but does not take into account the terrain conditions while
planning. It uses down-hill planning algorithm based
methods[5] for path planning.

The WM(world model) at this level is world centric in
nature. It can be imagined that the robot is stationary in a
constantly moving world around it. The time horizon at this
level is in minutes.

PID or such low level methods can not be used at this level
as they can’t handle the planning part .

POMDP is not required as it does not have to make decision
based on various available actions/choices available.

Level 2:

Track Controller Module

This level deals with decision making to ensure the safety of
operation and precise movement of the robot. This level
receives the command from level above (Nav_Manager
module). IT can be said that this level makes the decision
and plans ‘tactically’ within the limits of ‘strategic planning’
made by level 3(Nav-manager module).

It is less reactive than level 1 and level 0, but more reactive
than level 3. It is also less deliberative in nature than level 3,
but more deliberative than levels below.

Ensures safety of the operation by choosing the action within
the commanded actions it receives from level 3.

The WM at this level is said to be less world centric in nature
and more ego-centric. It has detailed information regarding
its surroundings, but it lacks the information outside its
sensitive range. The information is centred on the robot.

It has time horizon in seconds.

The control method used at this level is POMDP (Partially
observable Markov Decision Process)[6]. POMDP deals
effectively with uncertainty and hence help reduce the
unsafe behaviour. This level is responsible for safe decision
making within the ‘commanded action’ from level 3.Other
reason for using POMDP is that it can be mapped very well
within the fundamental building block of the RCS-RMA, i.e.
node. Figure 4 shows POMDP process within RCS node.

ISARC2006

POMDP Process as expressed in RCS -Node

Observations-out

XQ
8 g .
Value o) 3
Jadgement g 3
3)
(2 ® Iy
% 3| | g
Updated Environment {Action Outcome Gl [
expectation
Current System
f Updated state State —
Sensory » World Model >
- he Expected Plans / actions
state & Taken in t-1
environement
3 -
o o
3 9
Observations-in 9 B
3 &
3
0
3
-

SP : Observation Function : Set of Observations Q, State S+

WM :Transition Function : Current state S; ,Set of Actions Available A, Expected action outcome,
Pruning

VJ : Reward Function: Pruning , Evaluated plans

BG : Action selection : Policy [

Figure 4: POMDP process development in RCS node
Level 1:

As can be seen from figure 3, level 1 consists of 2 modules,
viz object detection and servo control. Each of these
modules is explained here.

e Object Detection Module
This module deals with obstacle detection. The world model
contains mainly expected obstacle data. It can be highly
reactive when an obstacle comes within safe operating
peremeter. This module is also capable of halting the system
if unexpected and sudden obstacle comes in a close vicinity
of the robot. Time horizon is in ms.

e Servo Control Module
This module ensures accurate movement of robot towards
the target position. Ensures smooth operation of tracks
This is also capable of halting the system if required. WM
contains robot data, such as position, speed, slope, tilt angles
etc.

It is important to note that this level does not take part in
decision making or planning.
The control method used at this level is PID.
Both these modules at level 1 help keep system safe by
reducing the uncertainty about the
1. current state of robot, e.g. position, orientation,
speed, tilt angles etc
2. current state of the world, e.g. obstacle presence,
speed, nature etc.

-850-

5. CONCLUSION AND FUTUTE WORK

It is believed that using varying methods at different levels
of hierarchical architecture facilitates reliable, effective and
the best suitable system operation.

This architecture is in the development stages at present.
The next step is to implement it on the simulated mobile
robot and then the future objective is to extend it to the
actual mobile robot excavator and test it on the real
construction site.

6. REFERENCES

[1]Albus, J.S. (1991). “Outline for a Theory of
Intelligence”, IEEE Transactions on Systems, Man and
Cybernetics, 21 (3): p. 473-509

[2]Albus, J.S.; Meystel, A.M., ‘Engineering of mind: an
introduction to the science of intelligent systems’
Chichester; Wiley, 2001

[3]Arkin, R.C., (1998) Behaviour-Based Robotics, MIT
Press, Cambridge, MA.

[4]Balch, T.R., Grid-based navigation for mobile robots.
‘The Robotics Practitioner’, 2(1), 1996

[5]Gazi, V., (et al eds), The RCS handbook - tools for
real-time control systems software development, Wiley,
2001

[6] Kaelbling L.P., (1998), Littman M.L., Cassandra A.R.,
“Planning and Acting in Partially Observable Stochastic
Domains”, Artificial Intelligence Vol 101, pp99-134.

-851-

ISARC2006

	152

