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Abstract:  The National Institute of Standards and Technology (NIST) is developing a real-time control system for a robotic 
crane (the NIST RoboCrane) that will perform automated structural steel pick-and-place operations. The control system 
architecture is based on the NIST Real-time Control Systems (RCS) reference model, which defines a system development 
methodology and a hierarchical control architecture in which system tasks and associated information are decomposed and 
organized into more easily manageable components or subsets. The task of picking and placing a structural steel beam was 
decomposed into multiple sub-task levels that must be performed in order to complete the pick-and-place operation. Tasks 
were decomposed from high-level operator input, such as “Install Beam A” down through the controller to the sensor and 
actuator level on the crane, at which, for example, voltages are computed and output to individual motors. Each level was 
organized into a series of control nodes each responsible for executing the sub-tasks at that given level of control. The 
control nodes share a common generic node model for sensor information processing, world modeling, and behavior 
generation. The control system development effort and its implementation on RoboCrane are presented in this paper. 
 
Keywords: construction automation, real-time control architecture, robocrane, robotic crane, steel construction, task 
decomposition. 
 
 
1. INTRODUCTION 
The Construction Metrology and Automation Group 
(CMAG) at the National Institute of Standards and 
Technology (NIST) has been conducting ongoing research 
in autonomous construction since 2002. The goal of this 
research is to provide standards, methodologies, and 
performance metrics that will enable the development of 
advanced systems to automate construction tasks. CMAG’s 
initial focus has been on the performance of autonomous 
structural steel erection, and in particular the steel beam 
pick-and-place operation. These efforts are also aimed at 
developing an Automated Construction Testbed (ACT) 
through which to test innovative construction technologies. 
 
CMAG has implemented new capabilities into the NIST 
RoboCrane – a robotic crane developed at NIST in the early 
1980’s [1, 2, 3] – in order to develop and demonstrate 
autonomous steel construction processes. Chief among the 
desired capabilities is improved picking and placement of 
steel beams. The pick-and-place capability has been 
implemented into the ACT as a scaled, yet representative 
construction task. Specifically, CMAG recently 
demonstrated autonomous picking of a 7-foot structural 
steel beam and placement into a specially designed holder 
using prototype drop-in connections 1  (see Figure 1). A 
detailed description of the work that was conducted to give 
RoboCrane this capability can be found in [4]. 
                                                           
1 A gravity-load-only shear connection originally designed 
at the Lehigh University Advanced Technology for Large 
Structural Systems (ATLSS) Center. 

This paper describes the work that is underway to develop a 
new controller for RoboCrane. A brief description of 
RoboCrane is presented next. 
 

 
 
Figure 1. The autonomous RoboCrane transporting a 7 foot 
structural steel beam within the Automated Construction 
Testbed at NIST. 
 
2. THE NIST ROBOCRANE 
2.1 General Description 
RoboCrane was first developed by the NIST Manufacturing 
Engineering Laboratory’s (MEL) Intelligent Systems 
Division (ISD) in the late 1980’s as part of a Defense 
Advanced Research Project Agency (DARPA) contract to 
stabilize crane loads. The functional design was further 

-412-

ISARC2006



developed and adapted for specialized applications 
including manufacturing, construction, hazardous waste 
remediation, aircraft paint stripping, and shipbuilding [5, 6, 
7]. 
 
The basic RoboCrane is a six degree of freedom (DOF), 
parallel, kinematic machine (an inverted Stewart-Gough 
platform) actuated through a cable-based support system. 
The suspended moveable platform is kinematically 
constrained by maintaining tension in all six support cables 
(due to gravity) which terminate in pairs at the vertices of 
the overhead support. 
 
This arrangement provides enhanced load stability over 
traditional lift systems (or cranes) and improved control of 
the position and orientation of the load. The suspended 
moveable platform and the overhead support typically form 
two opposing equilateral triangles, and are often referred to 
as the “lower triangle” and “upper triangle,” respectively. In 
the version of RoboCrane used in this project, the 
Tetrahedral Robotic Apparatus (TETRA), all the winches, 
amplifiers, and motor controllers are located on the 
moveable platform. 
 
2.2 Developments to Date and Current Limitations 
The current RoboCrane is capable of autonomous assembly 
of a multi-component, simple, steel structure using pose 
tracking provided by a laser-based site measurement system 
(SMS) and assembly scripts generated from a commercial 
4D-CAD package. An automated gripper mechanism was 
also designed and implemented. All of the above was 
achieved without altering RoboCrane’s original 
teleoperated control system. Instead, a high-level 
autonomous control system was developed to simulate the 
human operator by sending identical 6-DOF joystick 2 
commands through and reading the same encoder data from 
the original controller’s interface. 
 
Although autonomous operation was demonstrated using 
the current RoboCrane controller, the current RoboCrane 
controller does not have the necessary functionality and 
flexibility for use as a general development/testing 
platform. More sophisticated capabilities, such as real-time 
collision detection and the ability to combine various 
position sensing systems for pose estimation are not 
possible without altering the existing low-level control 
system. Thus, we decided to upgrade some of RoboCrane’s 
control hardware and develop new control software that 
could more easily accommodate the various improvements 
required to operate efficiently as a versatile intelligent 
construction test platform for the ACT. The new control 
system is being developed following the NIST Real-time 
Control System (RCS) methodology. 
 

                                                           
2 A 3D input device that allows a user to simultaneously 
command 6 degrees of freedom with one hand. 

3. THE NIST REAL-TIME CONTROL SYSTEM 
The NIST RCS methodology describes how to build control 
systems using a hierarchy of cyclically executing control 
modules. At the lowest level of the hierarchy, each control 
module processes input from sensors, builds a world model, 
and generates outputs to actuators in response to commands 
from its supervisory control module. These functional 
components of a control module are termed sensory 
processing (SP), world modeling (WM) and behavior 
generation (BG), respectively. The servo control of a motor 
is a common example of a control module at the lowest 
level. Here, the sensor may be a motor shaft position 
encoder, the actuator is the motor shaft, the command is a 
desired setpoint for the shaft position, and the behavior may 
be the execution of a simple 
proportional-integral-derivative (PID) control algorithm. 
The SP function may simply be reading and scaling input 
from the encoder device, and the WM function may be 
maintaining a filtered estimate of the shaft position. Typical 
cycle times for such control modules are on the order of a 
millisecond.  
 
One or more of these lowest-level control modules may be 
subordinate to a control module at the next level up in the 
hierarchy, termed the supervisor. In our example, the SP 
function at this level may simply provide each motor shaft 
position to the WM function, which would compute the 
overall position and orientation of the device’s controlled 
point, perhaps the tool on a robot. The BG function may 
smoothly transform goal points to motor trajectories based 
on speed, acceleration and jerk. Here, goal points may 
arrive at variable intervals from the higher-level supervisor, 
one that may be reading them from a program file. Cycle 
times increase by about an order of magnitude for control 
modules one level higher in the hierarchy. For this 
trajectory planner, the cycle time would be about 10 ms.  
 
A full RCS hierarchy would include additional lowest-level 
control modules for individual tools, and control modules at 
higher levels of the hierarchy may coordinate the actions of 
many robots and auxiliary equipment. RCS has found its 
richest application in the area of mobile robotics. Here the 
SP functions include not just motors but cameras, 3D 
imaging systems (e.g. laser scanner), GPS and other 
navigation sensors. WM functions build maps of various 
resolutions and maintain symbolic representations of the 
world. BG functions reason on the symbolic 
representations, planning optimal paths around known 
features and reacting to sensed obstacles.  
 
An RCS design differs from functional design or 
object-oriented design in that it begins with a task analysis 
of the system to be controlled. Here the designer identifies 
the tasks to be performed at the top level, and then breaks 
each task down into subtasks that are performed by the 
subordinates. Usually the designer does not have complete 
freedom to determine the task breakdown, as some of the 
components that make up the system may have been reused 
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from prior projects. In this case, the tasks must be expressed 
in terms of the available subtasks. Task analyses are helped 
enormously by considering scenarios that include system 
startup, shutdown, normal use and changes between various 
modes of operation. Often these scenarios bring to light the 
need for tasks that are not apparent from the original 
conception of the system. 
 
An example of a comprehensive task analysis for the design 
of an automatic road vehicle controller can be found in [8]. 
The designers considered hundreds of scenarios listed in a 
manual of military driving, including lane changes, passing 
and intersection rules. What is made obvious by this 
analysis is that the top- and bottom-level tasks are relatively 
simple, while the tasks in the middle are the most complex. 
Other examples of task analyses for unmanned vehicle 
systems can be found in the latest version of RCS (known as 
4D/RCS) [9]. 
 
Implementation of RCS control modules is done 
conceptually using state tables, which can then be 
programmed in any general-purpose computer language 
using conditionals or switch statements. The NIST RCS 
Library [10] documents the software tools available for 
programming in C++ or Java. A detailed handbook [11] 
covers the entire RCS analysis, design and programming 
using several examples and the RCS Library tools.  
 
4. RCS CONTROLLER DESIGN FOR 
AUTONOMOUS STRUCTURAL STEEL ERECTION 
Designing a new RCS-based controller for RoboCrane 
began by first identifying the requirements of the controller. 
Although the initial focus was on structural steel erection, 
we considered it important to design the new controller to 
be expandable to handle more generic construction tasks. 
Therefore, the overall goal of the RoboCrane controller was 
defined as follows: to plan and execute tasks required for 
automated construction-material handling and/or building 
construction. 
 
4.1 Controller Requirements 
The requirements for the new control system were defined 
next. In order to accomplish everything we intended to do 
with RoboCrane we decided that the controller should 
provide the following: 

• Autonomous, semi-automated, and teleoperated 
modes of operation  

• RoboCrane tool-point (i.e., platform) position and 
velocity control modes 

• RoboCrane tool-point motion in joint, Cartesian, 
as well as other user-definable coordinate systems 

• Cross-platform code portability (but still 
dependent on the real-time operating system) 

• Adaptability to other robot/crane hardware 
• Sensor-based collision avoidance  

 

4.2 System Scope 
Although the motivation for developing a new controller 
was to be able to use it to control various cable-driven 
robots and to accomplish various tasks, the initial scope of 
the controller was limited to the following: 

• Smooth and stable motion of the NIST RoboCrane 
• Perform the steel beam pick and place task 
• Construct a structure whose shape is limited by 

RoboCrane’s current range of motion 
• Connect the beam to the holder using drop-in 

connectors 
• Carry beams whose size falls within RoboCrane’s 

current load-carrying capabilities 
• Communicate to RoboCrane using the current 

field bus architecture 
• Operate under a real-time Linux operating system 
• Use the built-in incremental winch motor encoders 

as well as the laser-based positioning system to 
determine RoboCrane’s pose, but include the 
ability to add other sensors for pose determination 
in the future 

• Acquire the steel beam and holder poses using the 
current laser-based positioning system 

 
4.3 Task Decomposition 
The next step in the RCS controller design process was to 
conduct a task decomposition of the controller’s overall 
goal. Through a series of internal brainstorming meetings, 
we divided the overall goal into several subtasks, which 
were consequently also broken down into smaller tasks. 
This process continued until the lowest level tasks involved 
sending commands to the RoboCrane hardware (e.g., 
setting motor voltages). This is the lowest level of control 
that the new controller can provide. 
 
Figure 2 shows a sample task tree diagram resulting from 
the task decomposition process. In this figure the physical 
task of picking and placing a steel beam (as part of a steel 
erection sequence) is decomposed into 3 levels of subtasks. 
In keeping with the RCS architecture, each sublevel is 
responsible for planning and executing a smaller portion of 
the overall pick-and-place task. The lowest level is 
responsible for maintaining a commanded joint (or motor) 
velocity (or position). The next level up is responsible for 
generating and executing a series of n waypoints (i.e., 
positions and orientations in time) for the RoboCrane 
platform. The next higher level generates and executes the 
necessary commands to accomplish a segment of the 
pick-and-place operation. Finally, the highest level in 
Figure 2 is responsible for coordinating the execution of the 
segments that make up the overall pick-and-place task. This 
highest level also receives commands from higher levels 
(not shown in Figure 2) which coordinate the 
pick-and-place task with other tasks such as attaching a 
beam to a structure, picking and placing a column, and etc. 
 
In addition to the physical tasks represented in the task tree 
diagram of Figure 2, other non-physical tasks are required 
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in order to accomplish a pick-and-place operation. These 
include tasks such as detecting obstacles, calculating 
collision free paths, etc. These tasks were also captured and 

broken down into 3 levels of subtasks, but are not included 
in Figure 2. 

 
 

Figure 2. Task tree diagram for the pick-and-place next beam task. 
 
4.4 State Tables 
Following the task decomposition process, the commands 
going into and out of each task represented in the task tree 
diagram of Figure 2 are listed in a state table format. A state 
table (or state transition table) describes all possible input 
and output states (and actions) of a finite state machine. 
Figure 3 shows a state table for the pick and place next 
beam task. The command that starts the execution of this 
task has the same name as the task itself and is also the title 
of the state table. The state table columns (from left to right) 
represent the input state numbers, the conditions that must 
be met to change the state, the output state numbers, and the 
output commands that are sent to lower level tasks, 
respectively. 
 

Pick and Place Next Beam 
S0 New Command S1 Hold – Status=Executing
S1 Conditions Good to Move to Pre-Pick Pose S2 Move to Pre-Pick Pose 
S1 Timed out S0 Hold – Status=Error 
S2 Conditions Good to Move to Pick Pose S3 Move to Pick Pose 
S3 Conditions Good to Grasp S4 Grasp Beam 
S4 Conditions Good to Pre-Load Crane S5 Pre-Load Crane 
S5 Conditions Good to Move to Pre-Place Pose S6 Move to Pre-Place Pose 
S6 Conditions Good to Move to Place Pose S7 Move to Place Pose 
S7 Conditions Good to  Unload Crane S8 Unload Crane 
S8 Conditions Good to Release S9 Release Beam 
S9 Conditions Good to Move to Post Place Pose S10 Move to Post Place Pose
S10 At Post Place Pose S0 Hold - Status=Done 

 
Figure 3. State table for the pick and place next beam task. 
 

When the pick and place next beam command is issued by a 
higher level task, the controller examines the state table 
shown in Figure 3. The initial state of the pick and place 
next beam task is S0 and the first condition that is checked is 
whether the received command is new. If it is a new 
command, the state of the task is changed to S1 and the 
status of the task is changed to indicate that it is executing. 
 
The next time the above state table is checked (during the 
next execution cycle of its corresponding control module) 
the new state of the task is S1, and the conditions that must 
be met are whether it is acceptable to move RoboCrane to 
the beam’s pre-pick pose, or whether enough time has 
elapsed that something must be wrong. There may be one or 
more sub-conditions that must be satisfied in order to 
determine whether it is acceptable to proceed, but these can 
be aggregated into one description in the state table. If the 
conditions are met, the state of the task is changed to S2 and 
the command to move to the pre-pick pose is sent to a 
lower-level task. If time has expired, the state of the task is 
changed to S0 and an error is reported. Each lower level 
task that receives an output command reports its status back 
to the higher level task that issued the command until it 
finishes executing or encounters an error. This process 
continues until all of the commands in the state table have 
been executed, at which point the pick and place next beam 
task is considered completed and the state of the table is 
reset to S0. For brevity, only a single timeout condition is 
shown in Figure 3. In practice, numerous checks of this sort 
are made throughout the state table. Once the state tables for 
all of the tasks identified through the task decomposition 
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process are completed they are organized into control 
modules as described next and implemented in software 
following the RCS guidelines. 
4.5 Control Modules 
As described in the RCS description in Section 3, the tasks 
in the task tree diagram of Figure 2 are organized into 
multiple levels. Each level’s tasks may be grouped together 
into one or more modules responsible for coordinating and 
executing the tasks within it. Some of the critical modules 
(such as the servo algorithms) run as real-time processes 
within the operating system, while other less critical 
modules (such as long term path planning) run as 
non-deterministic processes. 
 
Figure 4 shows the control architecture for the new 
RoboCrane controller. The four levels above the 
software/hardware demarcation line in Figure 4 correspond 
to the four levels of Figure 2. The tasks have been grouped 
into the control modules shown. For example, the bottom 
level tasks of Figure 2 are grouped into the six “Servo” 
modules in Figure 4. Each of these modules are responsible 

for executing a servo algorithm which accepts the actual 
and desired positions (or velocity) of a winch motor as 
inputs and calculates a command voltage which maintains 
the desired position (or velocity). An alternate 
configuration would be to group the six servo modules into 
one. 
 
Figure 4 also shows that the RoboCrane controller is part of 
a larger control architecture which includes four 
higher-level modules. For example, at the level above the 
RoboCrane controller would be a Pick-and-Place Manager 
that would actually command RoboCrane to perform the 
pick-and-place operation. The commands sent down by 
each module to a lower-level module are shown in the light 
gray boxes on the right. Some of the functions (or 
non-physical tasks) that each module performs are also 
shown in the light gray boxes on the left. The control 
modules above the Pick-and-Place Manager are included in 
the figure, but are out of the scope of the current controller 
development effort. 
 

 

 
Figure 4. New RoboCrane controller architecture diagram. 
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Finally, Figure 4 also includes modules for controlling the 
3D imaging systems. These modules are responsible for 
coordinating the sensor orientations with the RoboCrane 
platform’s motion in order to maintain a desired part of 
RoboCrane’s environment within the combined sensors’ 
field of view. 
 
5. RESULTS AND CONCLUSIONS 
Researchers from the Construction Metrology and 
Automation Group at NIST are developing a new controller 
for the RoboCrane robot, which is based on the NIST 
Real-time Control System methodology. The new controller 
will enhance RoboCrane’s performance and enable more 
complex functionality for the NIST Automated 
Construction Testbed. These efforts are initially focused on 
developing standards, test methods, and performance 
metrics for robotic structural steel erection. 
 
To date, the lowest level tasks identified through the RCS 
task decomposition process (Figure 2) have been 
implemented and tested as part of the new RoboCrane servo 
control module. In addition, the software interface between 
the servo module and the RoboCrane fieldbus 
communication hardware has also been completed and 
tested as part of the servo control module development 
effort. The servo algorithm has been tuned and tested with 
RoboCrane’s winch motors using position feedback from 
the motor encoders and a PID loop to calculate the required 
motor voltages. The servo control module runs at a 5 ms 
frequency within a real-time task. This control cycle time 
was determined through testing and is capable of 
controlling the winches at their maximum rate of rotation. 
 
6. FUTURE WORK 
Future work will focus on implementing the higher level 
tasks from the RCS task decomposition process as a 
near-term goal. This will also involve developing new 
world modeling and sensor processing capabilities for 
RoboCrane. 
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