
DEVELOPMENT OF A REAL-TIME CONTROL SYSTEM ARCHITECTURE
FOR AUTOMATED STEEL CONSTRUCTION

Kamel S. Saidi, Robert Bunch, Alan M. Lytle

Construction Metrology and Automation Group
National Institute of Standards and Technology

100 Bureau Drive, MS 8611, Gaithersburg, MD 20899-8611
kamel.saidi@nist.gov / robert.bunch@nist.gov /

alan.lytle@nist.gov

Fredrick Proctor
Control Systems Group

National Institute of Standards and Technology
100 Bureau Drive, MS 8230, Gaithersburg, MD 20899-8230

fredrick.proctor@nist.gov

Abstract: The National Institute of Standards and Technology (NIST) is developing a real-time control system for a robotic
crane (the NIST RoboCrane) that will perform automated structural steel pick-and-place operations. The control system
architecture is based on the NIST Real-time Control Systems (RCS) reference model, which defines a system development
methodology and a hierarchical control architecture in which system tasks and associated information are decomposed and
organized into more easily manageable components or subsets. The task of picking and placing a structural steel beam was
decomposed into multiple sub-task levels that must be performed in order to complete the pick-and-place operation. Tasks
were decomposed from high-level operator input, such as “Install Beam A” down through the controller to the sensor and
actuator level on the crane, at which, for example, voltages are computed and output to individual motors. Each level was
organized into a series of control nodes each responsible for executing the sub-tasks at that given level of control. The
control nodes share a common generic node model for sensor information processing, world modeling, and behavior
generation. The control system development effort and its implementation on RoboCrane are presented in this paper.

Keywords: construction automation, real-time control architecture, robocrane, robotic crane, steel construction, task
decomposition.

1. INTRODUCTION
The Construction Metrology and Automation Group
(CMAG) at the National Institute of Standards and
Technology (NIST) has been conducting ongoing research
in autonomous construction since 2002. The goal of this
research is to provide standards, methodologies, and
performance metrics that will enable the development of
advanced systems to automate construction tasks. CMAG’s
initial focus has been on the performance of autonomous
structural steel erection, and in particular the steel beam
pick-and-place operation. These efforts are also aimed at
developing an Automated Construction Testbed (ACT)
through which to test innovative construction technologies.

CMAG has implemented new capabilities into the NIST
RoboCrane – a robotic crane developed at NIST in the early
1980’s [1, 2, 3] – in order to develop and demonstrate
autonomous steel construction processes. Chief among the
desired capabilities is improved picking and placement of
steel beams. The pick-and-place capability has been
implemented into the ACT as a scaled, yet representative
construction task. Specifically, CMAG recently
demonstrated autonomous picking of a 7-foot structural
steel beam and placement into a specially designed holder
using prototype drop-in connections 1 (see Figure 1). A
detailed description of the work that was conducted to give
RoboCrane this capability can be found in [4].

1 A gravity-load-only shear connection originally designed
at the Lehigh University Advanced Technology for Large
Structural Systems (ATLSS) Center.

This paper describes the work that is underway to develop a
new controller for RoboCrane. A brief description of
RoboCrane is presented next.

Figure 1. The autonomous RoboCrane transporting a 7 foot
structural steel beam within the Automated Construction
Testbed at NIST.

2. THE NIST ROBOCRANE
2.1 General Description
RoboCrane was first developed by the NIST Manufacturing
Engineering Laboratory’s (MEL) Intelligent Systems
Division (ISD) in the late 1980’s as part of a Defense
Advanced Research Project Agency (DARPA) contract to
stabilize crane loads. The functional design was further

-412-

ISARC2006

developed and adapted for specialized applications
including manufacturing, construction, hazardous waste
remediation, aircraft paint stripping, and shipbuilding [5, 6,
7].

The basic RoboCrane is a six degree of freedom (DOF),
parallel, kinematic machine (an inverted Stewart-Gough
platform) actuated through a cable-based support system.
The suspended moveable platform is kinematically
constrained by maintaining tension in all six support cables
(due to gravity) which terminate in pairs at the vertices of
the overhead support.

This arrangement provides enhanced load stability over
traditional lift systems (or cranes) and improved control of
the position and orientation of the load. The suspended
moveable platform and the overhead support typically form
two opposing equilateral triangles, and are often referred to
as the “lower triangle” and “upper triangle,” respectively. In
the version of RoboCrane used in this project, the
Tetrahedral Robotic Apparatus (TETRA), all the winches,
amplifiers, and motor controllers are located on the
moveable platform.

2.2 Developments to Date and Current Limitations
The current RoboCrane is capable of autonomous assembly
of a multi-component, simple, steel structure using pose
tracking provided by a laser-based site measurement system
(SMS) and assembly scripts generated from a commercial
4D-CAD package. An automated gripper mechanism was
also designed and implemented. All of the above was
achieved without altering RoboCrane’s original
teleoperated control system. Instead, a high-level
autonomous control system was developed to simulate the
human operator by sending identical 6-DOF joystick 2
commands through and reading the same encoder data from
the original controller’s interface.

Although autonomous operation was demonstrated using
the current RoboCrane controller, the current RoboCrane
controller does not have the necessary functionality and
flexibility for use as a general development/testing
platform. More sophisticated capabilities, such as real-time
collision detection and the ability to combine various
position sensing systems for pose estimation are not
possible without altering the existing low-level control
system. Thus, we decided to upgrade some of RoboCrane’s
control hardware and develop new control software that
could more easily accommodate the various improvements
required to operate efficiently as a versatile intelligent
construction test platform for the ACT. The new control
system is being developed following the NIST Real-time
Control System (RCS) methodology.

2 A 3D input device that allows a user to simultaneously
command 6 degrees of freedom with one hand.

3. THE NIST REAL-TIME CONTROL SYSTEM
The NIST RCS methodology describes how to build control
systems using a hierarchy of cyclically executing control
modules. At the lowest level of the hierarchy, each control
module processes input from sensors, builds a world model,
and generates outputs to actuators in response to commands
from its supervisory control module. These functional
components of a control module are termed sensory
processing (SP), world modeling (WM) and behavior
generation (BG), respectively. The servo control of a motor
is a common example of a control module at the lowest
level. Here, the sensor may be a motor shaft position
encoder, the actuator is the motor shaft, the command is a
desired setpoint for the shaft position, and the behavior may
be the execution of a simple
proportional-integral-derivative (PID) control algorithm.
The SP function may simply be reading and scaling input
from the encoder device, and the WM function may be
maintaining a filtered estimate of the shaft position. Typical
cycle times for such control modules are on the order of a
millisecond.

One or more of these lowest-level control modules may be
subordinate to a control module at the next level up in the
hierarchy, termed the supervisor. In our example, the SP
function at this level may simply provide each motor shaft
position to the WM function, which would compute the
overall position and orientation of the device’s controlled
point, perhaps the tool on a robot. The BG function may
smoothly transform goal points to motor trajectories based
on speed, acceleration and jerk. Here, goal points may
arrive at variable intervals from the higher-level supervisor,
one that may be reading them from a program file. Cycle
times increase by about an order of magnitude for control
modules one level higher in the hierarchy. For this
trajectory planner, the cycle time would be about 10 ms.

A full RCS hierarchy would include additional lowest-level
control modules for individual tools, and control modules at
higher levels of the hierarchy may coordinate the actions of
many robots and auxiliary equipment. RCS has found its
richest application in the area of mobile robotics. Here the
SP functions include not just motors but cameras, 3D
imaging systems (e.g. laser scanner), GPS and other
navigation sensors. WM functions build maps of various
resolutions and maintain symbolic representations of the
world. BG functions reason on the symbolic
representations, planning optimal paths around known
features and reacting to sensed obstacles.

An RCS design differs from functional design or
object-oriented design in that it begins with a task analysis
of the system to be controlled. Here the designer identifies
the tasks to be performed at the top level, and then breaks
each task down into subtasks that are performed by the
subordinates. Usually the designer does not have complete
freedom to determine the task breakdown, as some of the
components that make up the system may have been reused

-413-

ISARC2006

from prior projects. In this case, the tasks must be expressed
in terms of the available subtasks. Task analyses are helped
enormously by considering scenarios that include system
startup, shutdown, normal use and changes between various
modes of operation. Often these scenarios bring to light the
need for tasks that are not apparent from the original
conception of the system.

An example of a comprehensive task analysis for the design
of an automatic road vehicle controller can be found in [8].
The designers considered hundreds of scenarios listed in a
manual of military driving, including lane changes, passing
and intersection rules. What is made obvious by this
analysis is that the top- and bottom-level tasks are relatively
simple, while the tasks in the middle are the most complex.
Other examples of task analyses for unmanned vehicle
systems can be found in the latest version of RCS (known as
4D/RCS) [9].

Implementation of RCS control modules is done
conceptually using state tables, which can then be
programmed in any general-purpose computer language
using conditionals or switch statements. The NIST RCS
Library [10] documents the software tools available for
programming in C++ or Java. A detailed handbook [11]
covers the entire RCS analysis, design and programming
using several examples and the RCS Library tools.

4. RCS CONTROLLER DESIGN FOR
AUTONOMOUS STRUCTURAL STEEL ERECTION
Designing a new RCS-based controller for RoboCrane
began by first identifying the requirements of the controller.
Although the initial focus was on structural steel erection,
we considered it important to design the new controller to
be expandable to handle more generic construction tasks.
Therefore, the overall goal of the RoboCrane controller was
defined as follows: to plan and execute tasks required for
automated construction-material handling and/or building
construction.

4.1 Controller Requirements
The requirements for the new control system were defined
next. In order to accomplish everything we intended to do
with RoboCrane we decided that the controller should
provide the following:

• Autonomous, semi-automated, and teleoperated
modes of operation

• RoboCrane tool-point (i.e., platform) position and
velocity control modes

• RoboCrane tool-point motion in joint, Cartesian,
as well as other user-definable coordinate systems

• Cross-platform code portability (but still
dependent on the real-time operating system)

• Adaptability to other robot/crane hardware
• Sensor-based collision avoidance

4.2 System Scope
Although the motivation for developing a new controller
was to be able to use it to control various cable-driven
robots and to accomplish various tasks, the initial scope of
the controller was limited to the following:

• Smooth and stable motion of the NIST RoboCrane
• Perform the steel beam pick and place task
• Construct a structure whose shape is limited by

RoboCrane’s current range of motion
• Connect the beam to the holder using drop-in

connectors
• Carry beams whose size falls within RoboCrane’s

current load-carrying capabilities
• Communicate to RoboCrane using the current

field bus architecture
• Operate under a real-time Linux operating system
• Use the built-in incremental winch motor encoders

as well as the laser-based positioning system to
determine RoboCrane’s pose, but include the
ability to add other sensors for pose determination
in the future

• Acquire the steel beam and holder poses using the
current laser-based positioning system

4.3 Task Decomposition
The next step in the RCS controller design process was to
conduct a task decomposition of the controller’s overall
goal. Through a series of internal brainstorming meetings,
we divided the overall goal into several subtasks, which
were consequently also broken down into smaller tasks.
This process continued until the lowest level tasks involved
sending commands to the RoboCrane hardware (e.g.,
setting motor voltages). This is the lowest level of control
that the new controller can provide.

Figure 2 shows a sample task tree diagram resulting from
the task decomposition process. In this figure the physical
task of picking and placing a steel beam (as part of a steel
erection sequence) is decomposed into 3 levels of subtasks.
In keeping with the RCS architecture, each sublevel is
responsible for planning and executing a smaller portion of
the overall pick-and-place task. The lowest level is
responsible for maintaining a commanded joint (or motor)
velocity (or position). The next level up is responsible for
generating and executing a series of n waypoints (i.e.,
positions and orientations in time) for the RoboCrane
platform. The next higher level generates and executes the
necessary commands to accomplish a segment of the
pick-and-place operation. Finally, the highest level in
Figure 2 is responsible for coordinating the execution of the
segments that make up the overall pick-and-place task. This
highest level also receives commands from higher levels
(not shown in Figure 2) which coordinate the
pick-and-place task with other tasks such as attaching a
beam to a structure, picking and placing a column, and etc.

In addition to the physical tasks represented in the task tree
diagram of Figure 2, other non-physical tasks are required

-414-

ISARC2006

in order to accomplish a pick-and-place operation. These
include tasks such as detecting obstacles, calculating
collision free paths, etc. These tasks were also captured and

broken down into 3 levels of subtasks, but are not included
in Figure 2.

Figure 2. Task tree diagram for the pick-and-place next beam task.

4.4 State Tables
Following the task decomposition process, the commands
going into and out of each task represented in the task tree
diagram of Figure 2 are listed in a state table format. A state
table (or state transition table) describes all possible input
and output states (and actions) of a finite state machine.
Figure 3 shows a state table for the pick and place next
beam task. The command that starts the execution of this
task has the same name as the task itself and is also the title
of the state table. The state table columns (from left to right)
represent the input state numbers, the conditions that must
be met to change the state, the output state numbers, and the
output commands that are sent to lower level tasks,
respectively.

Pick and Place Next Beam
S0 New Command S1 Hold – Status=Executing
S1 Conditions Good to Move to Pre-Pick Pose S2 Move to Pre-Pick Pose
S1 Timed out S0 Hold – Status=Error
S2 Conditions Good to Move to Pick Pose S3 Move to Pick Pose
S3 Conditions Good to Grasp S4 Grasp Beam
S4 Conditions Good to Pre-Load Crane S5 Pre-Load Crane
S5 Conditions Good to Move to Pre-Place Pose S6 Move to Pre-Place Pose
S6 Conditions Good to Move to Place Pose S7 Move to Place Pose
S7 Conditions Good to Unload Crane S8 Unload Crane
S8 Conditions Good to Release S9 Release Beam
S9 Conditions Good to Move to Post Place Pose S10 Move to Post Place Pose
S10 At Post Place Pose S0 Hold - Status=Done

Figure 3. State table for the pick and place next beam task.

When the pick and place next beam command is issued by a
higher level task, the controller examines the state table
shown in Figure 3. The initial state of the pick and place
next beam task is S0 and the first condition that is checked is
whether the received command is new. If it is a new
command, the state of the task is changed to S1 and the
status of the task is changed to indicate that it is executing.

The next time the above state table is checked (during the
next execution cycle of its corresponding control module)
the new state of the task is S1, and the conditions that must
be met are whether it is acceptable to move RoboCrane to
the beam’s pre-pick pose, or whether enough time has
elapsed that something must be wrong. There may be one or
more sub-conditions that must be satisfied in order to
determine whether it is acceptable to proceed, but these can
be aggregated into one description in the state table. If the
conditions are met, the state of the task is changed to S2 and
the command to move to the pre-pick pose is sent to a
lower-level task. If time has expired, the state of the task is
changed to S0 and an error is reported. Each lower level
task that receives an output command reports its status back
to the higher level task that issued the command until it
finishes executing or encounters an error. This process
continues until all of the commands in the state table have
been executed, at which point the pick and place next beam
task is considered completed and the state of the table is
reset to S0. For brevity, only a single timeout condition is
shown in Figure 3. In practice, numerous checks of this sort
are made throughout the state table. Once the state tables for
all of the tasks identified through the task decomposition

-415-

ISARC2006

process are completed they are organized into control
modules as described next and implemented in software
following the RCS guidelines.
4.5 Control Modules
As described in the RCS description in Section 3, the tasks
in the task tree diagram of Figure 2 are organized into
multiple levels. Each level’s tasks may be grouped together
into one or more modules responsible for coordinating and
executing the tasks within it. Some of the critical modules
(such as the servo algorithms) run as real-time processes
within the operating system, while other less critical
modules (such as long term path planning) run as
non-deterministic processes.

Figure 4 shows the control architecture for the new
RoboCrane controller. The four levels above the
software/hardware demarcation line in Figure 4 correspond
to the four levels of Figure 2. The tasks have been grouped
into the control modules shown. For example, the bottom
level tasks of Figure 2 are grouped into the six “Servo”
modules in Figure 4. Each of these modules are responsible

for executing a servo algorithm which accepts the actual
and desired positions (or velocity) of a winch motor as
inputs and calculates a command voltage which maintains
the desired position (or velocity). An alternate
configuration would be to group the six servo modules into
one.

Figure 4 also shows that the RoboCrane controller is part of
a larger control architecture which includes four
higher-level modules. For example, at the level above the
RoboCrane controller would be a Pick-and-Place Manager
that would actually command RoboCrane to perform the
pick-and-place operation. The commands sent down by
each module to a lower-level module are shown in the light
gray boxes on the right. Some of the functions (or
non-physical tasks) that each module performs are also
shown in the light gray boxes on the left. The control
modules above the Pick-and-Place Manager are included in
the figure, but are out of the scope of the current controller
development effort.

Figure 4. New RoboCrane controller architecture diagram.

-416-

ISARC2006

Finally, Figure 4 also includes modules for controlling the
3D imaging systems. These modules are responsible for
coordinating the sensor orientations with the RoboCrane
platform’s motion in order to maintain a desired part of
RoboCrane’s environment within the combined sensors’
field of view.

5. RESULTS AND CONCLUSIONS
Researchers from the Construction Metrology and
Automation Group at NIST are developing a new controller
for the RoboCrane robot, which is based on the NIST
Real-time Control System methodology. The new controller
will enhance RoboCrane’s performance and enable more
complex functionality for the NIST Automated
Construction Testbed. These efforts are initially focused on
developing standards, test methods, and performance
metrics for robotic structural steel erection.

To date, the lowest level tasks identified through the RCS
task decomposition process (Figure 2) have been
implemented and tested as part of the new RoboCrane servo
control module. In addition, the software interface between
the servo module and the RoboCrane fieldbus
communication hardware has also been completed and
tested as part of the servo control module development
effort. The servo algorithm has been tuned and tested with
RoboCrane’s winch motors using position feedback from
the motor encoders and a PID loop to calculate the required
motor voltages. The servo control module runs at a 5 ms
frequency within a real-time task. This control cycle time
was determined through testing and is capable of
controlling the winches at their maximum rate of rotation.

6. FUTURE WORK
Future work will focus on implementing the higher level
tasks from the RCS task decomposition process as a
near-term goal. This will also involve developing new
world modeling and sensor processing capabilities for
RoboCrane.

7. REFERENCES

[1] Dagalakis, N.G., Albus, J.S., Goodwin, K.R., Lee, J.D.,

Tsai, T., Abrishamian, H., and Bostelman, R.V.,
“Robot Crane Technology Program – Final Report,”
NIST Technical Note 1267, July 1989.

[2] Albus, J., Bostelman, R., and Dagalakis, N., “The NIST

RoboCrane, A Robot Crane,” Journal of Research of
the National Institute of Standards and Technology,
Vol. 97, No. 3, May-June 1992, pp. 373-385.

[3] Bostelman, R.V., Jacoff, A., Dagalakis, N.G., Albus,

J.S., “RCS-Based RoboCrane Integration,”
Proceedings of the International Conference on
Intelligent Systems: A Semiotic Perspective,
Gaithersburg, MD, October 20-23, 1996.

[4] Saidi, K.S., Lytle, A.M., and Scott, N.A.,

“Developments towards Automated Construction,”
NISTIR 7264, National Institute of Standards and
Technology, Gaithersburg, MD, 2005.

[5] Bostelman, R.V., Albus, J.S., Dagalakis, N.G., Jacoff,

A., and Gross, J., “Applications of the NIST
RoboCrane,” Proceedings of the 5th International
Symposium on Robotics and Manufacturing, Maui, HI,
August 14-18, 1994, (1994)

[6] Bostelman, R., Albus, J., and Stone, W. C., “Toward

Next-Generation Construction Machines,” American
Nuclear Society Proceedings, Seattle, WA, March 4-8,
2001.

[7] Bostelman, R.V., Proctor, F.M., Shackleford, W.,

Lytle, A., Albus, J.S., “The Flying Carpet: A Tool to
Improve Ship Repair Efficiency,” American Society of
Naval Engineers Symposium, Manufacturing
Technology for Ship Construction and Repair,
Bremerton, WA, September 10-12, 2002.

[8] Barbera, A., Albus, J., Messina, E., Schlenoff, C., and

Horst, J., “How Task Analysis Can Be Used to Derive
and Organize the Knowledge for the Control of
Autonomous Vehicles,” Proceedings of the AAAI
Sprint Symposium Series on Knowledge
Representation and Ontology for Autonomous Systems,
Palo Alto, CA, March 22-24, 2004.

[9] Albus J. and et al., “4D/RCS: A Reference Model

Architecture for Unmanned Systems, Version 2.0,” in
NISTIR 6910, National Institute of Standards and
Technology, Gaithersburg, MD, 2002.

[10] RCS, “Real-Time Control Systems Library – Software

and Documentation,” available:
http://www.isd.mel.nist.gov/projects/rcslib.

[11] Gazi, V., Moore, M.L., Passino, K.M., Shackleford,

W.P., Proctor, F.M. and Albus, J.S., The RCS
Handbook – Tools for Real-Time Control Systems
Software Development, John Wiley & Sons, 2001.
ISBN 0-471-43565-1.

-417-

ISARC2006

	154

