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ABSTRACT
This paper introduces a novel and efficient optimization method, the Combined Effect Comprehensive
Learning Particle Swarm Optimizer (CECLPSO) to handle the problems of premature and slow con-
vergence with inferior solution prevailing in PSO and its variants. These weaknesses are resolved by
introducing the combined effect of two consecutive global best particles contribution on the learning
strategies of particles with the integration of Comprehensive Learning. This is in contrast to the original
Comprehensive Learning PSO (CLPSO) technique, in which, the particles learning strategy is based
on the knowledge of only one global best gbest. The performance of the CECLPSO is compared with
basic PSO (BPSO) and CLPSO algorithms, on search efficiency,with the set of benchmark functions of
dimension 50. The simulation result clearly indicates thatthe proposed CECLPSO algorithm prevents
premature convergence and obtains better solution over basic PSO and CLCPSO in optimizing higher
dimensional multimodal functions.
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1. INTRODUCTION
Evolutionary algorithms are stochastic opti-

mization techniques, which learns and adapts
from social behavior of species. To replicate and
to use the techniques followed by the species, var-
ious researchers have developed natural comput-
ing algorithms for optimization problems. The
first natural algorithm was Genetic algorithm
(GA)[1]. GA efficiently handles for optimizing
multi-modal and multi objective function. In spite
of its efficiency in producing better solution, it
suffers with heavy computational burden to solve
complex real world problems. The Particle Swarm
Optimization(PSO) is similar to GA, was intro-
duced in 1995 by Kennedy and Eberhart [2-3].

PSO is a population based stochastic optimization
technique. This algorithm has been an increas-
ingly popular tool for optimizing realworld prob-
lems [4-8]. PSO simulate [4] the social behav-
ior of swarm such as bird flocking, fish school-
ing to solve optimization problems. To understand
PSO, social life of the species need to be ana-
lyzed closely. Imagine a group of birds search-
ing food in a bounded area. Let their goal is to
find maximum density food in the search space,
where food is being scattered with varied den-
sity. The maximum density food location corre-
sponds to the global solution in PSO world. No
bird knows where the high density of food is, but
they know how far the goal is from their present
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position. Without prior knowledge, all the birds
start searching food randomly. Each can mem-
orize two facts i.e it can remember its own his-
tory where it found maximum density of food and
also it knows which bird has found the maximum
density of food among the whole swarm. The
flying trajectory of the birds will be altered with
these historical facts which helps in converging to-
wards the global solution. This scenario can be
used to solve the optimization problems. In PSO,
each single solution is a bird called particle in the
search space. All the particles have fitness val-
ues, which are evaluated by the fitness function
to be optimized. Every particle is associated with
two memories i.e. self previous best experience
(personal best or pbest) and best experience of the
swarm (global best or gbest), these factors decides
the trajectory of particle. In the past few years dif-
ferent research have been conducted to improve
the performance of the original PSO algorithm [8-
14] and are reported to give better solution.

Although different variants of original PSO
give better solutions, PSO still suffers with prema-
ture convergence and inferior solutions for com-
plex multimodal objective functions.This paper
introduces a novel and efficient optimization tech-
nique, Combined Effect Comprehensive Particle
Swarm Optimization (CECLPSO)to handle the
problems of slow and premature convergence with
improved solution. The weaknesses are reduced
by introducing the combined effect of second con-
secutive global best particles on learning strategies
with the integration of Comprehensive Learning
algorithm. This is in contrast to Comprehensive
Learning PSO (CLPSO) technique, in which, the
particles learning strategies is based on only one
global best.The performance of the CECLPSO is
compared with the original PSO i.e. Basic PSO
(BPSO) [1][2] and Comprehensive Learning PSO
(CLPSO) [5][8], on different benchmark functions
of higher dimensions. Experimental result shows
that CECLPSO algorithm overcomes the prema-
ture convergence with better solutions.

The paper is organized as follows: Section 2

briefly describes the BPSO and CLPSO. Section 3
describesproposed CECLPSO algorithm. Section
4 presents the benchmark functions and experi-
mental setup adopted for performance compari-
son. Section 5 describes the simulation results,
and Section 6 concludes the paper.

2. PSO ALGORITHM VARIANTS
2.1. Basic PSO algorithm overview

PSO is essentially an evolutionary algorithm for
solving optimization problems, which mimics the
artificial life of the swarm of birds or school of
fish [4]. Each particles position in a swarm repre-
sents the potential solution and is evaluated based
on the fitness function. The value of fitness func-
tion infers the quality of solution. As the parti-
cle fly randomly in D-dimensional search space,
the position and velocity ofith particle is rep-
resented asXi = (xi,1, xi,2, xi,3, · · · , xi,D) and
Vi = (vi,1, vi,2, vi,3, · · · , vi,D) respectively. With
increased iteration, the swarm will move towards
the global best position by keeping track of their
personal best. In a D dimensional search space
The pbest of the ith particle is represented as
pbest = (pi,1, pi,2, pi,3, · · · , pi,D) and thegbest

of the whole swarm is represented asgbest =
(g1, g2, g3, · · · , gD). The PSO algorithm updates
the velocity and position by the following equa-
tions .

V t+1
i,d = V t

i,d + c1 ∗ rand1 ∗ (pbestti,d −Xt
i,d)

+ c2 ∗ rand2 ∗ (gbesttd −Xt
i,d) (1)

Xt+1
i,d = Xt

i,d + V t+1
i,d (2)

Wherec1=2 andc2=2 are the learning factors
which determines the relative influence of cogni-
tive and social component to update the position
and velocity respectively.rand1 andrand2 are
two random numbers in the range of [0,1].V t

i,d

andXt
i,d are the velocity and position ofith parti-

cle in dth dimension tilltth iteration respectively.
Thegbesttd is the global best indth dimension till
tth iteration andpbestti,d is the personal best ofith
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particle indth dimension tilltth iteration.

2.2. CLPSO Algorithm overview
The CLPSO [5][8] was developed to overcome

the problem of premature convergence of BPSO
for complex multimodal functions. The learning
strategy CLPSO is different from BPSO. Instead
of learning from the two best factors i.e.gbest and
pbest of the particle simultaneously, in CLPSO,
the particles learn either from thegbest of the
swarm or particle’spbest, or thepbest of other
particle of different dimensions. In this, ifD is the
total number of dimension of optimizing problem
then,k−dimensions will be randomly chosen to
learn from thegbest, some of the(D− k) dimen-
sions from some randomly chosen particle’spbest

and the remaining dimensions learn from its own
pbest[5][8].The CLPSO algorithm updates the ve-
locity and position as in [5][8].

3. CECLPSO ALGORITHM
CECLPSO is proposed to overcome the prema-

ture convergence with improved solutions espe-
cially for multi-modal functions. CECLPSO dis-
cussed in three parts (a) Combined Effect of first
and second consecutive global best on learning
strategy, (b) capturing of the weak particles and
then direct these in the direction of better parti-
cle, (c) integration (a) and (b) with Comprehen-
sive Learning strategy.

3.1. Combined Effect
The combined effect concept is based on the

fact of human life. The human beings often be
suspicion about the decision made by single per-
son and hence always take the guidance of the sec-
ond person for the final decision. Thus the in-
fluence of more than one person’s opinion. The
same situation can be simulated in PSO for opti-
mization. The searching decision will be efficient
if second best particle’s experience is also consid-
ered along with the first. The velocity and position
update equations now becomes as

V t+1
i,d = wt

∗ V t
i,d + rand1 ∗ (gbest1t

d −Xt
i,d)

+ rand2 ∗ (gbest2t
d −Xt

i,d) (3)

Xt+1
i,d = Xt

i,d + V t+1
i,d (4)

3.2. Identification of weak particles
For multi-modal objective functions some of

the particles will be trapped in the deep local min-
ima and may not be available for searching the
good solutions. These trapped particles are called
weak particles and are major source of poor so-
lutions and premature convergence. CECLPSO
identifies such particles which gives poor solu-
tions, and then accelerates those particles in the
direction of better particle of the swarm. Algo-
rithm 1 shows the piece of pseudo code to identify
and accelerate the trapped particles.

Algorithm 1 Identification of weak particles
1: Select← Sp Selection factor for trapped par-

ticles
2: m← Sp∗NP Number of particles to selected

(Sp = 0.5 assumed here for simulation)
3: q ← NP −m

4: sortedfitness← sort(f t+1) ’sort’ Arranges
the f t+1 of the particles in ascending order
and stores insortedfitness

5: for k ← 1, m do
6: for l← 1, NP do
7: ∆=sortedfitness(q + k)− f t+1(l)
8: if ∆ == 0 then
9: X(l) =rand ∗ gbest

10: end if
11: end for l

12: end for k

13: i← i + 1

3.3. Integration with Comprehensive Learning
In comprehensive learning the particles learn

from different exemplary at different dimension
and time. The comprehensive learning concept is
integrated with stated proposal with the refreshing
rate of 10. The particle’s velocity and position are
updated by selecting either of the following veloc-
ity and position update equation.

V t+1
i,d = wt

∗ V t
i,d + rand1 ∗ (gbest1t

d −Xt
i,d)
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+ rand2 ∗ (gbest2t
d −Xt

i,d) (5)

V t+1
i,d = wt

∗ V t
i,d + rand1 ∗ (pbesttf,d −Xt

i,d)

+ rand2 ∗ (gbest2t
d −Xt

i,d) (6)

V t+1
i,d = wt

∗ V t
i,d + rand1 ∗ (pbestti,d −Xt

i,d)

+ rand2 ∗ (gbest2t
d −Xt

i,d) (7)

Xt+1
i,d = Xt

i,d + V t+1
i,d (8)

Algorithm 2 presents the detailed CECLPSO al-
gorithm.

4. SIMULATION
4.1. Experimental setup

The simulations were conducted on Windows
XP with MatLab and PIV 2.6GHz with 512MB
of RAM. The population size of 25, for 1000 it-
eration. The algorithms were tested on set of ten
benchmark functions with dimension 50. The re-
sults obtained are the average of 30 trials. The
performance comparisons of CECLPSO are done
with BPSO and CLPSO algorithms.

4.2. Benchmark functions
PSO algorithms presents the difficulty on multi-

modal functions with multiple minima, there-
fore we focus on well-known standard bench-
mark functions shown in Table 2. The bench-
mark function are numbered asf1 to f10. Among
ten-mentioned benchmark functions; Dixon and
Pricef2, Spheref8, Sum Squaref9 and Zakharov
f10functions are simple, strongly convex and can
be considered as unimodal or multimodal. The
Ackley functionf1 at a low resolution the land-
scape of this is unimodal; however, the second
exponential term covers the landscape with many
small peaks and valleys. Griewank functionf3

is also multimodal with multiple minima. It has
a product term, introducing interdependency be-
tween the variables. The Levy functionf4 is
highly multimodal with several local minima. The
Powel functionf5 is also highly multimodal and
has several minima but they are non-symmetrical
and are randomly distributed. The characteristic
of Rastrigin functionf6 is the existence of many

suboptimal peaks whose values increase as the
distance from the global optimum point increases.
The Rosenbrock functionf7 is characterized by
an extremely deep valley along the parabola that
leads to the global minimum. Due to the non-
linearity of the valley, many algorithms converge
slowly because they change the direction of the
search repeatedly. The function has a long gully
with very steep walls and almost flat bottom.

5. RESULTS
The simulations are conducted on the set of

ten standard benchmark functions with dimen-
sion 50. The simulation results are categorized in
two a) Convergence by the algorithms over iter-
ation,shown in Fig.1 − 10 and b) the average of
30 trials shown in Table 1. The Table 1 gives
the complete information about the best and worst
value ever achieved by the algorithms over 30
trial, where each algorithm is run for 1000 iter-
ation in a trial.The mean, median and the standard
deviation of each algorithm are also presented.
The best mean result and best standard deviations
achieved by the algorithms are shown in bold. The
Fig.1− 10 shows the convergence graphs in terms
of best fitness value achieved by each of the algo-
rithms over 1000 iterations. From Table 1 it can
be observed that the mean results of CECLPSO
over 30 trials surpasses BPSO and CLPSO on
thef1(x) to f10(x) exceptf4(x). CECLPSO es-
pecially dominates thef1(x), f3(x), f5(x), f8(x)
andf9(x) where the standard deviation is almost
nil. The nil standard deviation show the robust-
ness of the CECLPSO algorithm. The CLPSO
outstands onf4(x) i.e. on Levy function and ob-
tains comparable solution onf6(x) too. From the
convergence graphs in Fig.1 − 10 it can be con-
cluded that CECLPSO obtains good quality solu-
tion and avoids premature converges onf1(x) to
f3(x) andf5(x) to f10(x). Fig 4 shows the out-
standing performance by the CLPSO onf4(x).
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Figure 1. Convergence graph of functionf1(x)

Algorithm 2 AEPSO algorithm
Initialize

1: Set← Xmax, Xmin, D, NP

2: Vmax ← 0.20 ∗ (Xmax −Xmin)
3: t← 0, i← 0 ⊲ t for iterations,i for particles
4: Randomly initialize positionX0

i ∈ D in R;
5: Randomly initialize velocityv0

i ≤ Vmax

6: Evaluatef0
i

7: pbest0i ← f0
i ,

8: gbest0 ← f0
best

Optimize
9: while i ≤ NP do

10: Update velocity using either of (5),(6) and (7)
equations

11: Update position using equation (8).
12: Evaluatef t+1

i

13: if f t+1
i < pbestti then

14: pbestt+1
i ← f t+1

i

15: end if
16: Findgbestt+1

d

17: if gbestt+1
d < gbesttd then

18: gbestt+1
d ← gbesttd

19: end if
20: i← i + 1
21: end while
22: If stop criteria not met increment t.
23: Go to step 9.

Report results
Terminate
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Figure 2. Convergence graph of functionf2(x)
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Figure 3. Convergence graph of functionf3(x)
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Figure 4. Convergence graph of functionf4(x)

6. CONCLUSION
In this paper, BPSO and CLPSO algorithms

are compared against CECLPSO. Ten standard
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Figure 5. Convergence graph of functionf5(x)
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Figure 6. Convergence graph of functionf6(x)
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Figure 7. Convergence graph of functionf7(x)

benchmark functions of 50 dimensions are ap-
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Figure 8. Convergence graph of functionf8(x)
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Figure 9. Convergence graph of functionf9(x)
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Figure 10. Convergence graph of functionf10(x)

plied for optimization. Brief descriptions of each
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algorithm along with CECLPSO are presented.
The comparative results of the simulation are also
presented. From the simulation, it is found that
the CECLPSO outperforms the other said PSO
variants in higher dimensional problems. In ad-
dition, to obtain better quality of solution, CE-
CLPSO also overcome the premature convergence
for higher dimensions. The strength of the pro-
posed scheme lies in finding the global solution
of the objective functions whose minima are reg-
ularly distributed. The proposed approach can not
be taken as granted for all the types of the objec-
tive functions. Further work need to be done to
overcome this drawback. This algorithm can be
applied for delay optimization, molecular geome-
try optimization, placement and routing optimiza-
tion in Very Large Scale Integrated circuit design.
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Table 1
Summary of results for function with dimension 50

Functions Algorithms Best Worst Mean Median STD
f1 PSO 2.85 3.38 3.19 3.20 1.17e-01

CLPSO 7.80e-02 1.59 5.39e-01 5.06e-01 4.13e-01
CECLPSO 2.66e-15 2.66e-15 2.66e-15 2.66e-15 0

f2 PSO 2.12e+02 5.14e+2 3.40e+02 3.36e+02 6.57e+01
CLPSO 5.47 2.05e+01 1.24e+01 1.21e+01 4.07

CECLPSO 6.66e-01 6.66e-01 6.66e-01 6.66e-01 2.82e-06
f3 PSO 1.72e-01 3.17e-01 2.41e-01 2.37e-01 3.738e-02

CLPSO 4.86e-04 1.09e-02 2.76e-03 2.49e-03 2.19e-03
CECLPSO 0 0 0 0 0

f4 PSO 1.88 2.59 2.31 2.34 1.63e-01
CLPSO 5.19e-03 4.37e-01 6.86e-02 3.24e-02 8.69e-02

CECLPSO 2.78e-01 6.76e-01 4.61e-01 4.49e-01 1.17e-01
f5 PSO 1.01e+02 3.18e+02 2.01e+02 1.88e+02 5.01e+01

CLPSO 7.55e-02 4.07 9.96e-01 7.39e-01 8.35e-01
CECLPSO 8.87e-45 1.01e-31 3.36e-33 2.24e-43 1.84e-32

f6 PSO 3.47e+02 4.15e+02 3.84e+02 3.85e+02 1.57e+01
CLPSO 2.73e+01 9.86e+01 5.91e+01 5.76e+01 1.576e+01

CECLPSO 0 1.62e+02 5.21e+01 5.43e+01 5.14e+01
f7 PSO 5.19e+02 7.93e+02 7.03e+02 7.07e+02 6.89e+01

CLPSO 5.77e+01 2.03e+02 1.49e+02 1.62e+02 4.44e+01
CECLPSO 4.75e+01 4.87e+01 4.82e+01 4.83e+01 3.46e-01

f8 PSO 6.42 1.07e+01 8.34 8.36 1.05
CLPSO 1.08e-02 3.18e-01 7.79e-02 5.16e-02 7.09e-02

CECLPSO 8.42e-49 8.66e-47 1.15e-47 4.17e-48 1.79e-47
f9 PSO 1.38e+02 2.35e+02 1.87e+02 1.86e+02 2.17e+01

CLPSO 7.90e-02 5.73 1.30 9.74e-01 1.17
CECLPSO 8.63e-48 1.00e-44 8.67e-46 3.56e-46 1.85e-45

f10 PSO 1.18e+01 4.06e+02 1.44e+02 1.08e+02 1.09e+02
CLPSO 5.31 4.46e+01 1.47e+01 1.19e+01 9.28

CECLPSO 1.30e-05 1.06e-01 1.76e-02 4.17e-03 2.78e-02

Table 2
Benchmark Functions Definition

Name Definition Range

Ackley f1(x)=20 + e
−

1

5

√

1

n

∑

i
(xi)2

− e−
1

n

∑n
i cos(2πxi) [32.768,-32.768]

Dixon Price f2(x) = (x1 − 1)2 +
∑n

i=2 i(2x2
i − xi− 1)2 [-10, 10]

Griewank f3(x)=
∑D

i=1
x2

i

4000 −
∏N

i=1 cos
(

xi
√

i

)

+ 1 [-100, 100]

Levy f4(x)=sin2(πy1) +
∑n−1

i=1 [(yi − 1)2

(1 + 10sin2(πyi + 1))]
+(yn − 1)2

(

1 + 10sin2(2πyn)
)

,
where,yi = 1 + xi−1

4 , i = 1, 2, · · ·n [-10, 10]

Powel f5(x)=
∑n/4

i=1 (x4i−3 + 10x4i−2)
2

+ 5(x4i−1 − x4i)
2

+(x4i−2 − x4i−1)
4 + 10(x4i−3 − x4i)

4 [-4 5]
Rastrigin f6(x)=

∑D
i=1

(

x2
i − 10cos(2πxi) + 10

)

[-5.12 5.12]

Rosenbrock f7(x)=
∑D−1

i=1

[

100
(

x2
i − xi+1

)2
+ (xi − 1)2

]

[-100 100]

Sum Square f8(x)=
∑D

i=1 ix2
i [-10, 10]

Zakharov f9(x)=
∑n

i=1 x2
i + (

∑n
i=1 0.5ixi)

2
+ (

∑n
i=1 0.5ixi)

4 [-5, 10]
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