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ABSTRACT 

Heavy rainfall and typhoon oftentimes cause the collapse of hillslopes across mountain roads. 

Disastrous consequences of slope collapses necessitate the approach for predicting their occurrences. In 
practice, slope collapse prediction can be formulated as a deterministic classification problem with two 

class labels, namely “collapse” and “non-collapse”. Nevertheless, due to the criticality and the uncertainty 

of the problem, evaluating the collapse susceptibility of an area is a challenging task. This study proposes 
a novel Artificial Intelligence (AI) approach, named as K-Nearest Neighbor Based Bayesian Classifier (K-

NNBC), to deal with slope collapse assessment. In the proposed model, Bayesian inference is used as a 

framework to achieve probabilistic prediction of slope collapse. Meanwhile, K-Nearest Neighbor (K-NN) 

is employed as a density estimation technique. Equipped with probabilistic outputs, the K-NNBC is able 
to yield predictions with different levels of confidence and diminish misclassified cases. Experimental 

results point out that the proposed model is very helpful for decision-makers in slope collapse assessment 

and disaster prevention planning. 
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BACKGROUND 

Road networks are integral to the infrastructure system. The reason is that they can support economic 

growth at both regional and national level by improving transportation efficiencies as well as by 

facilitating commercial activities and tourisms. Therefore, guaranteeing adequately serviceable roads is 

crucial for the enhancement of the national economy. Taiwan was formed by the collision action of 
Eurasia Plate and Philippine Sea Plate; and it is relatively young in geological age (Ching & Liao 2006). 

The island is located in the vicinity of the Pacific Ring of fire which frequently experiences seismic 

activities. Taiwan’s topography is characterized by mountainous areas in the east and lowland plains in 
the west. Additionally, the region has a subtropical climate and high levels of precipitation. Therefore, 

earthquakes and typhoons are absolutely not unusual natural hazards within the country.  

Over the past decades, an extensive network of mountain roads has been built to catch up with 

population expansion and economic development (Ching et al. 2011; Yang et al. 2012). Natural hazards 
coupled with rugged terrain lead to the fact that slope collapses may occur in many mountain roads. These 

catastrophic events are often triggered by earthquakes or heavy rainfalls during typhoons or monsoon 

storms (Lin et al. 2009; Nefeslioglu et al. 2010). Slope collapses are very undesirable since they inflict 
damages to man-made structures, disruption of traffic, and loss of human lives. As a consequence, slope 

stability analysis is an inevitable task which should be conducted regularly by roadway maintenance 

authorities (Cheng & Ko 2003; Das et al. 2011). The results of analysis can be utilized for identifying 
collapse-prone areas as well as allocating scarce resources in order to establish an overall disaster 

prevention program (Cheng et al. 2012). Currently, machine learning approaches have demonstrated their 

feasibility as well as effectiveness in slope stability analysis (Sakellariou & Ferentinou 2005).  

Machine learning approaches are established based on several AI techniques and historical databases 
(Bishop 2006). Using this method, the slope collapse prediction can be formulated as a binary 

classification problem in which prediction outputs are either “collapse” or “non-collapse”. Therefore, 

many classification techniques, such as Artificial Neural Networks and Support Vector Machines, have 
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shown to be feasible when applying in the problem at hand (Cheng et al. 2012). By learning the events in 

the past, the AI based models reduce the dependency on human judgments and can yield predictive results 
based on information of the new input patterns. 

Nevertheless, the slope collapse prediction problem is not only inherently complex but also highly 

uncertain. One can never possess absolute confidence to argue where and when a slope will fail because 

there are numerous uncertainties involved. Moreover, in some circumstances, wrong classifications can 
be very costly if committed. Consequently, simple binary classifications are inadequate for the decision-

making process. It is because they do not exhibit the uncertainties associated with the predicted outcomes. 

Thus, it is much more beneficial and reliable to employ a mechanism for probabilistic prediction of slope 
collapse in which the classification results are expressed in terms of probabilities instead of binary values.  

The classifier based on Bayesian framework is an effective probabilistic approach for prediction. The 

Bayesian classifier is found to possess a number of advantages, such as flexibility in modeling, capability 
of coping with uncertainty, and resilience to noise (Langley & Sage 1994). Experimental studies in a 

variety of fields have revealed that the method can deliver competitive prediction performances with low 

computational (Domingos & Pazzani 1997). Nevertheless, very few previous studies have dedicated in 

investigating the capability of the Bayesian approach in predicting slope stability. Therefore, this study 
put forward a novel AI approach, named as K-Nearest Neighbor Based Bayesian Classifier (K-NNBC), 

for slope collapse assessment. In the new model, Bayesian inference is used as a framework to achieve 

probabilistic classifications. Meanwhile, K-NN algorithm is incorporated for density estimation. 

METHODOLOGY 

Bayesian Framework for Classification 

In machine learning, the goal of classification is to assign an object to one of M discrete classes Ck 
where k = 1,…, M. The input space is thereby divided into several decision regions by the decision 

boundaries (Bishop 2006). To classify the object based on the evidence provided by its feature vector X, it 

is requisite to obtain the conditional probability P(Ck|X), which represents how likely the input X belongs 

to the class Ck. Accordingly, the object will be assigned to the class with largest conditional probability. 
Hence, in the context of Bayesian theorem, the conditional probability P(Ck|X) is computed as following 

(Bishop 2006; Duda et al. 2001): 
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where )|( XCP k
represents the posterior probability of the class Ck. Meanwhile, )|( kCXP is called the 

likelihood which is the class-conditional probability density function of the feature X. )( kCP  denotes the 

prior probability of the class Ck. And, )(XP represents the evidence factor. The evidence factor can be 

viewed as a scale factor used to ensure that the posterior probabilities sum to one (Duda et al. 2001). It 

can be is calculated as following: 
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As shown in Eq. 1, the structure of Bayesian classification relies upon the prior probabilities P(Ck)  

and the conditional densities P(X|Ck) (Theodoridis & Koutroumbas 2009). The first quantity can be 
estimated directly from the distribution of the training samples among classes (Clark & Niblett 1989). If 

N is the total number of available training cases and Nk is the number of cases belonging to the class Ck, 

then the prior probability of this class is calculated as P(Ck) = Nk/N. The next step is to derive the class-

conditional density P(X|Ck). The P(X|Ck) describes the distribution of the feature vector X in each class. 
This conditional density is also known as the likelihood function of Ck with respect to X. 

Herein, we consider the problem in which the pattern X represents a D-dimensional vector, and each 

attribute of X is denoted as Xj where j = 1, …, D. Thus, to derive the likelihood function P(X|Ck), the 
common approach is to assume that the probability distributions of attributes Xj, within each class, are 
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independent of each other. In this case, the classification approach is known as the Naïve Bayesian 

Classifier (Bishop 2006). Accordingly, the class-conditional density can be computed as following: 
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where P(Xj|Ck) denotes the probability distribution of the attributes Xj within each class Ck. In addition, 

the density P(Xj|Ck) is often assumed to be a Normal distribution. 
Needless to say, the assumption that the probability distributions for attributes are independent of 

each other can be not realistic. The reason is that correlations among attributes are not unusual. 

Additionally, a Normal distribution may not be the most appropriate approximation. It is because the true 

probability density function can possibly be multi-modal and it can take an arbitrary form. When the 
aforementioned assumptions are violated, the performance of the Bayesian Classifier can be 

unquestionably degraded. 

K-NN Approach for Density Estimation 

Density estimation is the task of modeling a probability density function given a finite number of data 
instances. Among the methods for approximating density function, the K-NN is attractive because of its 

flexibility as well as simplicity. The technique does not require any assumption of the functional form for 

the modeled density.  
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Fig. 1 K-NN for Density Estimation 

This section of the paper reviews the K-NN algorithm for density estimation (Theodoridis & 

Koutroumbas 2009). Consider a set of N data points, X1, X2, …, XN ∈  R
D
 generated from an unknown 

statistical distribution, the goal is to estimate the value of the unknown density function at a given point 
Xo. The procedure of K-NN approach for approximating probability density function is illustrated in Fig. 

1. In this method, the volume of surrounding the estimation point Xo is enlarged until it encloses K 

neighbors. The value of K can be selected by a general rule: DK ≈ where D is the dimension of the data. 

After the K neighbors have been identified, we can compute the volume of the hyper-sphere surrounding 

Xo as follows:  

Ko RCXV ×=)(            (4) 

where RK is the distance between the estimation point and its K
th
 closet neighbor (see Fig. 1). The quantity 

C is the volume of the unit sphere in D-dimensions, which is calculated as following: 
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Accordingly, the estimated density P(Xo) is derived as follows: 
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where K is the number of neighbors; N is the total number of data point in the training set; V(Xo) denotes 
the volume of the hyper-sphere enclosing Xo and its neighbors. 

K-NN BASED BAYESIAN CLASSIFIER FOR SLOPE COLLAPSE PREDICTION  

Fig. 2 provides the overall picture of the proposed model K-NNBC which is divided into 7 steps. It is 

noted that the model is established based on the Bayesian inference and the K-NN approach. 

1. Input data

2. Setting the threshold 

probability (PA)

5. Calculating the 

evidence P(X)

6. Deriving the posterior 

probability P(Ck|X)

Subjective judgment

4. Approximating the 

likelihood P(X|Ck)

3. Computing the prior 

probability P(Ck)

7. Classification output

Training data

K-Nearest Neighbor 
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Fig. 2 K-Nearest Neighbor Based Bayesian Classifier 

(1) Input data: The input data provides the pattern of an area that is under investigation of slope stability. 

The data attributes consist of influencing factors that impose significant impacts on the slope collapse 

events.  

(2) Setting the threshold probability: In this study, we employ a threshold probability, denoted as PA, to 

determine whether an input pattern is accepted to be in one class. Specifically, if the posterior probability 

of the class P(Ck|X) is greater than or equal to the threshold probability, the input pattern X is accepted to 
be classified into the class. The value of PA is selected based on the criticality of the problem and the 

subjective judgment of the analyst (Bishop 2006). In some critical cases, one may set a high value (e.g. 

0.9) to avoid wrong classifications made by the machine.  

(3) Computing the prior probability: The prior probability can be estimated from the relative frequency 

of each class in the training data set. 

(4) Approximating the likelihood: This step aims to compute the class-conditional density P(X|Ck). To 

do so, all of the data instances associated with the class label Ck is extracted; and the K-NN is employed 
to estimate the P(X|Ck). As mentioned earlier, the technique does not require any prior information of the 



5 

 

estimated probability density function. The estimation is determined entirely by the characteristic of the 

training data. 

(5) Calculating the evidence: The evidence factor is used to scale the posterior probability into the range 

of 0 and 1. Because the slope collapse prediction is a two-class classification problem, the evidence is 
calculated as following: 

)()|()()|()( 2211 CPCXPCPCXPXP +=         (7) 

where P(C1) and P(C2) are the prior probabilities of the class 1 and class 2, respectively. Those prior 

probabilities are computed at the step 3 of the model. Meanwhile, P(X|C1) and P(X|C2) are the two the 
class-conditional densities that are estimated by the K-NN. 

 (6) Deriving the posterior probability: In this step, the posterior probability of each class given an 
input pattern X is given as follows: 
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 (7) Classification output: Given the threshold probability (PA) and the derived posterior probability of 

each class, the classification outcome can be obtained. Fig. 3 illustrates the classification decision based 

on PA. The decision rule of the proposed model can be expressed as follows: 
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Fig. 3 Classification decision based on PA 

MODEL APPICATION 

Historical data 

The historical database utilized in this article contains 211 slope evaluation samples collected in the 
Provincial Highway No. 18 and No. 21. Within the database, there are 105 failure cases and 106 non-

failure cases. For slope collapse prediction, this study employs 16 influencing factors divided into 9 

groups: landforms, geological structure, stratigraphy, rock properties, vegetation coverage, water 
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condition, road properties, earthquake, and rainfall. Table 1 provides the information of the influencing 

factors and their statistical descriptions. 

Table 1 Influencing factors and statistical description 

Group Note Description Min Average Std. Dev. Max 

Landforms 
IF1 Slope aspect 0.0 154.1 99.8 355.0 

IF2 Slope gradient 10.0 60.7 14.2 90.0 

IF3 Slope height 5.0 20.7 16.8 150.0 

IF4 Slope form -55.4 1.0 18.7 50.0 

Geological Structure IF5 Formation type 1.0 4.8 0.9 6.0 

Stratigraphy 
IF6 Angle between slope aspect and trend 0.0 89.7 32.1 180.0 

IF7 Angle between gradient and inclination -20.0 46.2 23.8 85.0 

Rock Properties 
IF8 Rock mass size 0.1 0.5 0.4 2.5 

IF9 Rock mass volume 20.0 68.0 17.2 100.0 

Vegetation coverage 
IF10 Vegetation coverage percentage 5.0 59.8 27.6 98.0 

IF11 Vegetation coverage thickness 0.1 1.4 1.1 4.5 

Water condition IF12 Catchment area 197.0 23553.5 69365.2 888751.0 

Road Properties 
IF13 Excavation height at slope toe 0.0 4.7 5.4 50.0 

IF14 Change of slope gradient due to toe cutting 0.0 9.8 11.6 45.0 

Earthquake IF15 Maximum ground acceleration 0.0 249.1 84.1 391.9 

Rainfall IF16 Maximum accumulated rainfall 384.6 1238.0 525.8 1947.3 

 

Experimental Results 

Among 211 samples in the database, 171 samples are used to train the prediction model and 40 
samples are reserved for the testing process. After the training process, the proposed classification model 

(K-NNBC) can be utilized to forecast new input patterns from the testing set. Detailed prediction results 

of the K-NNBC for testing are illustrated in Table 2. In this table, P(C1|X) and P(C2|X) represent the 
posterior probability of collapse and non-collapse, respectively.  

Table 2 K-NNBC prediction result for testing cases 

Case P(C1|X) P(C2|X) 
Actual 

output 

Predicted output 

PA= 0.5 PA= 0.6 PA=0.7 PA=0.8 PA=0.9 

1 0.011 0.989 0 0 0 0 0 0 

2 0.002 0.998 0 0 0 0 0 0 

3 0.647 0.353 1 1 1 x x x 

4 0.532 0.468 1 1 x x x x 

5 0.004 0.996 0 0 0 0 0 0 

… … … … … … … … … 

38 0.005 0.995 0 0 0 0 0 0 

39 0.004 0.996 0 0 0 0 0 0 

40 0.993 0.007 1 1 1 1 1 1 



7 

 

Moreover, the classification outputs corresponding to different level of the threshold probability PA 

are also provided. As mentioned earlier, the value of PA is used to derive the final classification result of 
the input pattern. It is also worth reminding that if the posterior probability of the class P(Ck|X) is greater 

than or equal to PA, the input pattern X is classified into the class Ck. Therefore, if the posterior 

probabilities of both classes cannot surpass the threshold value, then the input X remains unclassified. In 

Table 2, outputs of unclassified patterns are denoted with the symbol ‘x’. 

Furthermore, to better verify the capability of the new approach, its performance is compared to 

results obtained from the Naïve Bayesian Classifier (NBC). In the NBC, the probability distributions of 
attributes within each class are considered to be independent of each other. Moreover, in this method, the 

class-conditional densities are assumed to be Normal distributions which parameters (mean and variance) 

are estimated directly from the training samples. The detail of result comparison is provided in Table 3.  

Table 3 Result comparison 

 

Case 
PA 0.5 0.7 0.9 

Model NBC K-NNBC NBC K-NNBC NBC K-NNBC 

Training 

Classified cases 171 171 169 166 159 154 

Unclassified cases 0 0 2 5 12 17 

Misclassified cases 6 4 4 2 2 1 

Accuracy Rate (%) 96.5 97.7 97.6 98.8 98.7 99.4 

Testing 

Classified cases 40 40 37 34 36 33 

Unclassified cases 0 0 3 6 4 7 

Misclassified cases 4 2 1 0 1 0 

Accuracy Rate (%) 90.0 95.0 97.3 100.0 97.2 100.0 

 

Observable in Table 3, if the threshold PA is set to be 0.5, the NBC misclassifies 4 testing cases and 

thus, its accuracy rate is 90%. Meanwhile, the number of misclassifications and accuracy rate of K-NNBC 
for testing process is 2 and 95%, respectively. It is noted that if the PA is set to be 0.7 or larger values, the 

proposed K-NNBC achieves 100% of prediction accuracy in the testing process. On the other hand, even 

with high values of threshold probability, the NBC still committed misclassified cases. 

Discussions 

Essentially, with different values of the threshold probability, the classifier is allowed to deliver 

predictions with different level of confidence. The capability of exhibiting and adjusting confidence can 

be pivotal in slope collapse prediction. The reason is that, for critical areas, it is reliable as well as 

beneficial to set a high value of threshold probability to minimize the risk of erroneous classification. 
Typically, when PA = 0.7, the proposed method can predict accurately 85% of the cases, and leaves 6 

sensitive cases for expert decision. In this way, it can be seen that the method can help reduce the effort of 

human expert and thus boost the productivity of the analyzing process.  

Furthermore, the prediction outputs expressed in terms of probabilities can be inferred as an index for 

prioritizing different areas in mountainous regions. This function can be helpful for the decision-making 
process since there can be a large amount of man-made structures that are susceptible to damages caused 

by slope collapse. Moreover, the workforces as well as financial resources for constructing retaining 

structures are definitely limited. Therefore, Government agencies can utilize the proposed model as a tool 

for resource allocation to set up an optimal disaster prevention program. 
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CONCLUSION 

This paper has presented and verified a new prediction model, named as K-NNBC, to assist decision-
makers in slope collapse prediction. The proposed model is developed by the fusion of the Bayesian 

inference framework and the K-NN approach. The K-NNBC utilizes the Bayesian framework to compute 

the posterior probability of slope collapse event given an input pattern that provides features of the 

investigated area. Furthermore, K-NN is employed to approximate the class-conditional probability 
density without any assumption of the form of the density. The proposed model also does not require the 

assumption of independent attributes which can be delusive in the real-world situation. Superior 

prediction accuracy in the experiment process have convincingly proved the capability of the new 
approach for supporting decision-makers in slope collapse prediction as well as in disaster prevention 

planning. 
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