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ABSTRACT

Non-Intrusive Load Monitoring (NILM) is a method ektracting appliance-level power
consumption information from aggregate circuit-ledata with the goal of giving users feedback
regarding their energy consumption so they can takerol of their consumption habits. In this
paper, we present a novel algorithm for classifocabf on and off states of appliances. We
compare the performance of our algorithmoim state detection with a pervious paper that
evaluated the same dataset and show that it pesfapnto 13% better. We also present the
results of a case study where we collected datdiffarent modes of a cooktop, microwave and
dishwasher and used our algorithms to perform pastimation. The error on ten different
setups in the test bed ranges from 1% to 32%. \&uds our results and lay out ideas for future
work.
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INTRODUCTION

Non-Intrusive Load Monitoring (NILM) is a technigubkat aims to provide energy end
users with feedback regarding their appliance-lenelrgy consumption habits without having to
monitor each appliance individually. This idea HBeen around since the early 1980s when
George Hart and his colleagues filed it as a U&miatHart, Kern, & Schweppe, 1989). They
proposed to achieve this by monitoring the maicuiirthat feeds current and voltage into a
house, and based on the changes in electrical psigeatures there, establish an estimate of
what and when each appliance goesandoff. Then the end user is given an energy report that
details what appliance in the house consumed wdréibp of their total energy use. Research has
shown that feedback can motivate energy savinggpdbd 20% (Darby, 2006). This is important
because electricity, on its own, constitutes 41%otdl annual energy consumption in the US,
and 67% of that is produced from fossil fuels (EdiStates Energy Information Administration,
2009). Hence, savings due to NILM based feedbaethaals, in terms of both monetary units
and impact on environment, quickly add up to laageounts when nationwide or even global
figures are considered- validating its importance the need for its adoption.

The idea of energy monitoring at the main circ@vdl has already penetrated the
mainstream commercial market with devices like Hrergy Detective Envi?, Efergy’ etc.
Over the years, various improvements have been nadéart’s original idea by integrating
machine learning and signal processing technigiegnjan & Roth, 2011). Pattern recognition
methods (Farinaccio & Zmeureanu, 1999), the udeigifer order harmonics (Laughman et al.,
2003), and features from the raw current wavefo(its et al., 2004) are among the few
techniques implemented with some level of succBesearchers have also used fundamental
decomposition methods such as principal componeglysis (PCA) on power signatures (Kao,
Cho, Lee, Toyomura, & Yamazaki, 2009). AlgorithmeIsupport vector machines (SVM) (Kao
et al., 2009) and neural networks (NN) (PrudenfipZ) have also been tried. Recently,
unsupervised methods mostly based on graphical Imedeh as Bayesian networks (Lin, Lee,
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Hsun, & Jih, 2010), Hidden Markov Models (Kim, Maw Arlitt, Lyon, & Han, 2011) and
others have gained traction. Electric noise invbkage line generated by mechanical switches
(Patel, Robertson, Kientz, Reynolds, & Abowd, 20aAl electromagnetic interference (EMI)
noise resulting from switch mode power-supplies BESY1(Gupta, Reynolds, & Patel, 2010) have
also been studied as possible features for delassification.

To date, no NILM solution suitable for all types lodusehold appliances is available.
Zieffman and Roth (2011) note in their review ofLNI methods that most of research effort in
this area has been focused on signature exploréilso known as feature extraction). As a
consequence, other aspects of NILM like power egion and classification algorithm
development have not been studied in detail. Eveong the features that get proposed, due to
lack of a standard dataset and accuracy metriese tis no sense of how well the features
generalize to other sets of appliances. Also, very of the available solutions have been
developed with the practicality of implementatiommind.

To fill this void, this paper will leverage a singpand easy-to-implement algorithm to
obtain state change information in appliances. ddrributions of this paper are twofold. First,
we present a novel feature extraction techniqué finacesse®n transients (spikes observed
when an appliance turrom) to extract the meaningful features. We evalubagegerformance of
our feature extraction method on the dataset ugelebgés et al. and compare their results to
ours (Berges, Goldman, Matthews, Soibelman, & Asaler 2011). Secondly, we also present a
novel algorithm foroff state detection that relies on steady state (aftgethe transient when the
device is operating) current information. To ev&tuthe performance of owff state detection
method, we present results of power estimationédynusingoff state detection) on a case study
where we collected data for 8 different modes oée¢happliances.

A FRAMEWORK FOR POWER ESTIMATION

The ultimate goal of NILM algorithms is to estimatee power consumed by all the
devices being monitored. To achieve this, we cteattamework that comprises of four distinct
steps typically involved in a NILM setup. In thigcsion, we summarize our methods and
proposed algorithms for all of these steps.

Event Detection

Event Detection involves identifying when an evehinterest (device turningn or off,
for instance) occurs in the circuit. The algoritina propose for this is based on step changes in
real power. The step changes are monitored evenplsalf they are above (or below) a certain
threshold (50 Watts, for instance), they are labele an event of interest. After this we check to
see if the average energy for two seconds afteevket is at least 50% of the event. If so, the
event is labeled aan. In the case obff events, we check if the average energy for tworsgso
before the event is at least 80% of the event. fMlmabers are chosen empirically given the
nature of typicabn andoff transients, wheren transients usually start with a few samples long
spike followed by a dip, whileff transients just fall off steeply. Figure 1 shotws tesults of our
event detection algorithm on a combined operatfomasher and microwave.

Feature Extraction

Once event detection is done, necessary featunes thie event should be extracted in



order to identify what device caused it. Our altjon extracts a three second long transient for
each event. Based on the direction of the everdit{pe or negative), it is labeled as or off.
The on transients are thenormalized with the goal of highlighting the features that are
characteristic to it. Mosbn transients of appliances consist of a similar laegergy portion
(roughly rectangular) on top of which small appierand mode related variations reside. The
goal of ournormalization is to reduce the common shape portion and enh#meesmall
variations for classification. The effects of siggra@ normalization are illustrated in Figure 2.
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Figure 1- Event detection on aggregate signal ofomiave and washer. The red marks indicate a
microwave event while the green marks indicate sheaevent.

Thenormalization is done in the following steps:

1. Smoothing: The resulting transient from the evestedtion is smoothened by a moving
average of 10 milliseconds. This is achieved byvobring it with a 5 milliseconds long unit
rectangular pulse. Then, the 5 milliseconds postiahthe beginning and at the end of the
resulting signal are removed, as these portiondlynoentain artifacts from the smoothing.

2. Threshold selection: For each smoothened trangleatoot mean squares (RMS) of the real
power values are sorted. The values at the lowpstéent are then selected as a threshold.

3. Nonnegative threshold normalization: The resultiagsient is normalized point-wise minus
this threshold, and any resulting negative valughanged to 0.

4. Normalization by maximum: The resulting transierdni step 3 is then normalized by its
maximum RMS value. Theormalized transients are then taken as featuresfarvents.

For off events, feature extraction is different becaoféeransients look the same for all
devices. So, current signatures are used to exthacoff event features. For angff event
detected, we check for the current signatures riggfobre and after the event. The current
waveforms are then aligned according to their phiaksive to the voltage. This was done by
finding the zero-crossing (point where the sinuabiebltage waveform is zero) of the voltage
waveform before and after the event and using ffference to shift and align the current
waveform accordingly. The aligned waveforms arentbgbtracted to find the current waveform
of the appliance that wepff. Then, one period of that waveform is extracted ased as feature
for classification of that appliance. Figure 3 dstthis process.



Device Classification

Once the necessann and off features are extracted, a nearest neighbor algorigh
implemented for classification. The algorithm wd®sen for its performance and efficiency,
keeping in mind the feasibility of using it onlim@d in a practical setting. The algorithm works
by calculating the distance (Euclidean, in thisegdsetween the extracted test transient and all
the data in the training repository. It then clfigsithe test sample as whichever label it is dbse
to. The training data is collected by extractingramentioned featuréen transients and current
waveforms) from similar devices in a standalonérsgt
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Figure 2- Effects ofmnormalization on extracted transients. The left plots show ttamdients before
normalization, while the ones on the right show shene transients after normalization. For instatiee,
transient labeled Cooktopl on the right is the diemt of mode 1 of Cooktop from the left after
normalization, and so on. Normalized P stands for Normalizedd?ow

The same is done for steady state current sigrsatireeach mode. We wait a few
seconds after the state change of a device fairdhsient to become steady and take that as the
steady state. This is done to identify what dewvi@nt off. Figure 4 shows results of device
classification on the power signal shown in Figaire

Power Estimation

Our power estimation algorithm leverages step cbesuiig power as well as steady state
current information to perform power estimation. Wack all the devices that aom at any
given instance based on the results of our classinytime there is aoff event, we first check
to see if theoff drop is within 10% magnitude of any of tbe transients at that instance. If such
an on is found then thosen and off transients are grouped together, and power is ledézl
based on an extrapolation of their average valtwdsn those time periods. If such@mnis not
found (for various reasons including a very shaigesin theon transient), we extract a period of
the current waveform of the device that wefifif and run it against the nearest neighbor classifie



1. OFF Transient Detected 2. Steady state current before the OFF transient
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Figure 3- Steps involved in extracting the curngaveform of the device that changed state foorto off
after anoff transient is detected
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Figure 4- All the transients (extracted after ewdgtection in Figure 4) that were labeled as onhekight
possible categories after Device Classificatiorshidiasher 1, Dishwasher 3, etc. refer to differeaties
of the dishwasher. The transients in a particudéegory are overlaid on top of each other.

EVALUATION
Evaluation of on transient feature extraction technique

This section summarizes the performance of ourrdlgos on real-world data. To
evaluate the robustness of @aurtransient feature extraction algorithm, we testech the dataset
described by Bergés et al. (2011). Of the threasdas presented in the paper, we explored the
dataset that includes data from a house (with Ylisages and 176n events) and the dataset
that includes data from an apartment (with 14 appies and 3®n events). These datasets
included current and voltage readings from the neaicuit panel sampled at a frequency of 15
KHz using a split core current transformer and H0Q/voltage attenuator similar to the one
described in (Anderson et al., 2012). We testedfeature extraction algorithm with theirs by
using the same classifier (nearest neighbor) oresttieacted features. Table 1 summarizes the



results. Our features (which are only dependentreal poweron transients) outperformed
features described in the paper (which includedessijon coefficients from both real and
reactive power). As a benchmark, we also testegénrmance of nearest neighbor algorithm
on non-normalized on transients.

Table 1- Comparison of the performance of our feaéxtraction techniques fon transients
with feature extraction techniques described bygBeret al. (2011). The datasets were divided
into training and testing so that there was attleas training sample and one testing sample for

all events.

# of events Accuracy of nearest neighbor classifier

Train Test No After Regression
st st normalization normalization coefficients

Dataset 1 (Whole-House) 90 86 76.4% 82.25% 76.4%
Dataset 2 (Apartment) 17 18 52.2% 65.56% 56.67%
Dataset 1 and Dataset 2 107 104 56.1% 65.4% 58.4%

Evaluation of off event feature extraction technique

The dataset used in the previous section doesaméio information about steady state
current and hence cannot be used for evaluati@uidff event feature extraction technique. So,
we conducted a case study with three devices— mére, cooktop (electric stove) and washer
(dishwasher) to test our framework of power estiomas a whole. The devices were selected
because of the following reasons: (i) the poweisoomption is roughly the same for a microwave
and cooktop which forces our algorithm to look dtiner features than just power differences; (i)
the transients for certain washer modes are alth@ssame as certain cooktop modes which
forces us to look for other characteristic featurgi$) the microwave has a slow moving
transient, while the washer has multiple modesgchiilows us to tackle the problem of power
estimation in multiple modes and under differenhditions; and (iv) these are the major
electricity consuming appliances in a regular hbotgkkitchen.

The data collection setup included an analog-titaligconverter that sampled both
voltage and current at 2 kHz, measured on a potrgr t® which all of the above appliances
were connected. A 1/100 voltage attenuator andiacgpe current transformer, similar to the
one used in (Anderson et al., 2012) were used taiolihe analog signals. Data was also
collected for cases when two appliances were opegrat the same time. We trained our
algorithms on individual appliances and built a Bmepository of signatures. Then we tested the
aggregate signals (with multiple appliances) on waming set. Figure 2 shows some of the
transients for each of the appliances in our cdsdysand Figure 1 shows the aggregate
signatures for a case when two appliances weretpgr

A training repository was built with 508h transient signatures for all possible modes of
the three devices. There were eight distinct mddeghe three devices. We averaged all the
transient signatures in a particular mode to getedlian signature. This way there were eight
signatures, one for each mode, in our repositolnjs Significantly reduced the complexity of the
nearest neighbor algorithm without sacrificing gegformance.



Table 2- Percentage error in power estimation amdber of eventsof andoff) in the test
sample. The training was done on Sransientsollected on individual appliances.
Microwave and Cooktop-1 refers to one trail of aggte signature where both the appliances
were operating simultaneously, and so on.

Devices in test sample Number of events Error wdtestimation
Dishwasher 68 12%
Microwave 4 6%

Microwave and Cooktc- 1 8 4%
Microwave and Cooktop- 2 8 1%
Microwave and Cooktop- 3 8 5%
Microwave and Cooktop- 4 8 1%
Microwave and Dishwasher- 1 78 16%
Microwave and Dishwash- 2 90 9%
Microwave and Dishwasher- 3 90 7%
Microwave and Dishwasher- 4 96 32%
DISCUSSION

The feature extraction technique that we proposeridransients performs better than
more complex methods that utilize additional infation as was shown in the previous section.
To test for its robustness, we compared its perdoica withnon-normalized transients in the
data from our case study, and saw accuracy impremtsrof up to 40% uponormalization.
The low accuracy values in Table 1 should not lkerteat face value because event detection,
centering of extracted transients and ground tialibling were not done using our algorithms. In
a controlled setting where had control over theec@n, centering and training, our feature
extraction method had accuracies of up to 98%.

The results from Table 2 reflect the effectivenessoff transient detection and power
estimation algorithms. The power estimation resaitsMicrowave and Dishwasher-4 are not on
par with the rest of the results because someeoflithwasher modes were classified as cooktops
modes-as their power consumption and transienteshiapth look similar. Features like reactive
power or higher order harmonics specific to a diesiver could be added to the model to correct
for this in expenses of extra complexity.

The error in power estimation was calculated by ganmg the total power consumed by
the devices (Ground Truth) with the power consutmgdevices after classification. This model
of error estimation may be argued to be a lowendadn conveying the total picture, as over and
under power estimate errors at event level mayatamat resulting in smaller total error. The
only way to test for this is to verify the modelema large sample of data for consistency. Yet,
for the test samples in the case study, values laegely consistent and the larger errors were
borne out of misclassification between appliangesy We leave development of a better metric
for evaluating power estimation error and expansibthe case study to include more appliance
types as future work.

CONCLUSION

In this paper we outlined a brief history of Norrusive Load Monitoring (NILM)
techniques and presented a framework for estimagiogier at appliance level. As our
contributions, we developed an algorithm that ze#i novelnormalization techniques foron
transient detection, and compared its performagegnat a standard dataset. We found that it



outperformednon-normalized data by up to 13%. We also presented a methodIldb&s at
steady state current signatures @f event classification to perform power estimati®kie

reported on the results of using our algorithmmdata from our case study. The average error
on power estimation was around 9%.
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