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ABSTRACT 

 
This paper introduces a model-based automatic object recognition and registration framework to 

assist heavy equipment operators in rapidly perceiving 3D working environment at dynamic construction 
sites. A video camera and a laser scanner were utilized in this study to rapidly recognize and register 
dynamic target objects in a 3D space by dynamically separating target object’s point cloud data from a 
background scene for a quick computing process. A smart scan data updating method has been developed 
which only updates the dynamic target object’s point cloud data while keeping the previously scanned 
static work environments. Extracted target areas containing 3D point clouds were orthographically 
projected into a series of 2D planes with a rotation center located in the target’s vertical-middle line. 
Prepared 2D templates were compared to these 2D planes by extracting SURF features. Point cloud 
bundles of the target were recognized, and followed by the prepared CAD model’s registration to the 
templates. The field experimental results show that the proposed rapid workspace modeling method can 
significantly improve heavy construction equipment operations and automated equipment control by 
rapidly modeling dynamic target objects in a 3D view.  
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INTRODUCTION 
 
The interactions between workers, equipment, and materials can easily create visibility-related 

accidents. Visibility problems can lead to serious collisions without pro-active warnings. Because lack of 
full visibility is a major contributing factor in accidents at construction sites, there have been a number of 
advances in vision-aid techniques. 3D spatial modeling can help to optimize equipment control, 
significantly improve safety (Teizer, Allread, Fullerton, & Hinze, 2010), and enhance a remote operator’s 
spatial perception of the workspace (Cho, Wang, Tang & Haas, 2012). However, the rapid processing of 
tens of thousands bits of range data in real is still an unsolved problem requiring further investigation 
(Gong & Caldas, 2008). Unstructured work areas like construction sites are difficult to visualize 
graphically because they involve highly unpredictable activities and change rapidly. Construction site 
operations require real-time, or near real-time information, about the surrounding work environment, 
which further complicates graphical modeling and updating.  

 
One commonly used method to obtain the 3D position of an object is based on 3D scanning 

technology (Cho et al., 2012; Tang, Huber, Akinci & Lipman, 2010; Huber, Akinci, Tang & Adan, 2010); 
this method, however, has some limitations, such as low data collection speed and low object recognition 
rates (Kim, Lee, Cho & Kim, 2011). It has always been a challenge to recognize specific objects from a 3D 
point cloud in unstructured construction environments because it is difficult to rapidly extract the target 
area from background noises in a large and complex 3D point clouds.  

 
While rapid workspace modeling is essential to effectively control construction equipment (Lee, 

et al., 2009), few approaches have been accepted by the construction industry due to the difficulty of 
addressing all the challenges of current construction material handling tasks with the current sensor 
technologies. Thus, an innovation in rapid 3D spatial information is necessary to meet the challenges.  
Based on the previous work (Gai, Cho & Wang, 2012), the main objective of this research is to propose a 



 
 

 

model-based automatic target object recognition and registration method to help heavy equipment 
operators rapidly perceive 3D working environments at dynamic construction sites.  

 
This paper is organized as follows. First, a literature review of state-of-the-art object tracking and 

visualizing techniques used on construction job sites will be given. Then, a model-based framework will be 
discussed. After that, the validation of construction field test will be presented, and followed by 
conclusions and future work. 

 
LITERATURE REVIEW 

 
This section mainly discusses the state-of-the-art object tracking and visualizing techniques for 

real-time applications on construction sites.   
 

Sensor-based Methods: In the early stage, Radio Frequency Identification (RFID) and ultra-wideband 
were adopted in tag-based system to detect moving objects. Global Positioning System (GPS) and web-
based technologies were implemented to track vehicles and detect collision at outdoor environments 
(Navon & Shpatnitsky, 2005). There are also some attempts to combine RFID with GPS technology, and 
transfer data between detectors and receivers (Andoh, Su & Cai, 2012). However, GPS has drawbacks such 
that it works ineffectively without direct line of sight from the satellites, and it is expensive to install on 
every moving object, or parts of equipment. RFID readers need to be equipped in the equipment and 
connected to the computer networks for exchange of information, which mean additional costs related to 
hiring additional hardware and technical consultants. 

 
Vision-based Methods: A camera system consisting of one camera on the rear axle of the truck and one 
camera on the front of truck, as well as a video monitor in the cab can provide a visual check of the front 
and rear blind areas (Ruff 2007). Stereo vision-based methods, based on computer vision technologies, 
have been proposed as an effective alternative for tracking moving entities. Brilakis, Park and Jog (2011) 
introduced 2D vision-based methods that recognize new overlapping feature points and track them in 
subsequent video stream. To acquire a precise 3D position of objects with additional depth information, 
two or more cameras generate a stereo view after calibration with known intrinsic parameters. Park et al. 
(2012) achieved more accurate 3D locations of tracking objects by projecting the centroids of two cameras 
to 3D coordinates. There are two known drawbacks of vision-based techniques in tracking moving 
equipment at sites: 1) fixed camera locations have limited view angles and resolutions, and 2) the results 
are sensitive to lighting conditions. 

 
Laser Scanner-based Methods: Laser scanners have been extensively utilized to automatically obtain the 
"as-built" condition of an existing building; they also can be used to classify and capture a complex heavy 
equipment operation as it happens or to provide automating feedback to those who are conducting the 
operations (Arayici, 2007; Gai et al., 2012; Cho et al., 2012).  Lee et al. (2009) proposed an automated 
lifting-path tracking system on a tower crane to receive and record data from a laser device. Teizer et al. 
(2010) used a laser scanner inside an equipment cab to detect blind spots from 3D point clouds. Bosche 
and Hass (2008) registered 3D static CAD objects to laser-scanned point cloud data, which can be utilized 
to efficiently assess construction processes. However, most of the algorithms were developed mainly to 
recognize and register static objects’ models to point clouds.  Few applications have demonstrated the 
technical feasibility of registering dynamic models to point clouds in real time or near real time. 

 
METHODS 

 
A model-based rapid automatic object recognition and registration framework has been developed 

to help heavy equipment operators rapidly perceive the 3D working environment at dynamic construction 
sites. The framework of the proposed method is shown in Figure 1.  

 



 
 

 

This framework is mainly 
composed of main components: 
images and point cloud correlation 
(IPCC), video-based object 
recognition and tracking (VORT), 
target-focused smart scanning and 
updating (TSSU), 3D-2D projection 
and object recognition (3POR) and 
results visualization. In IPCC, a 
correlation between image data and 
3D point cloud is built; as a result, 
images are mapped onto the point 
clouds. The following components 
will be implemented based on the 
mapped point cloud data. In VORT, a 
calibrated video camera provides 2D 
consequential images of moving 
objects. Equipment operators define 
single or multiple bounding areas that 
contain specific single or multiple 
moving targets − like materials or 
equipment − from the graphical user 
interface (GUI). The Speeded Up 
Robust Features (SURF) features are 
extracted from the selected bounding 
areas. 2D consequential images with 
extracted SURF features are 
simultaneously compared to the 
features of the selected bounding areas. 
As a result, single or multiple 2D 
target areas are stretched and updated 
in the images. Taking a yellow robot 
as an example, Figure 2 shows the 
recognition and registration process.  
As a target, the yellow robot is 
automatically scanned and updated. 
Corresponding to the 2D target regions 
obtained in the last component, 3D bounding areas are scanned in the following rounds to replace the 
previously scanned work environments. Extracted target areas containing 3D point clouds are projected to 
a series of 2D planes with a rotation center located in the targets’ vertical-middle line. By extracting their 
SURF features, prepared 2D templates, which contain the operator’s selected objects, are compared with 
2D planes.  
 
Data Acquisition: An innovative robotic hybrid Light Detection And Ranging (LIDAR) system was 
developed, consisting of two 2D line laser scanners (80 meter working ranges at 100Hz scan speed, up to 
2.5 sec / 360º scan, 190º for vertical line), and a video camera, as shown in Figure 3. The resolution of each 
line laser is 0.25 degree in a vertical direction and 0.0072 degree in a horizontal direction.   The customized 
3D LIDAR system provides more flexibility in hardware control and software programming than a 
commercial LIDAR scanner does (Gai et al., 2012; Cho & Martinez, 2009). Based on the mounting 
configuration, we solved multiple degree-of-freedom (DOF) kinematics to obtain x-y-z coordinates from 
the LIDAR, and simultaneously generated real-time digital image data from the video camera. The LIDAR 
system was designed with two reversely positioned 2D line scanners to provide twice faster scanning rate 
and twice higher scanning resolution (Figure 4). 

 

 
 

Figure 1. The framework of the proposed method 
 

 
Figure 2. Example of object recognition and registration process 



 
 

 

Target Area-focused Smart Scanning: The component 
of target area-focused smart scanning is implemented 
based on the 2D bounding area obtained in 2D image-
based object recognition and tracking. Based on the 
bounding box approach, smart scanning can reduce data 
size and scanning time (Cho et al., 2012). A video camera 
captures 2D consequential images of working 
environments containing different types of equipment. 
The SURF descriptor was utilized for visual object 
recognition, and based on the results of which the 
algorithm Kalman filter (Steffen, 1981; Steffen, 2002) 
was used in the object tracking phase to produce estimates 
of unknown variables that are more precise than those 
based on a single measurement. The bounding box (i.e., 
Kernel) areas, containing specific moving objects (i.e., 
materials, a whole piece of equipment, or parts of heavy 
equipment), were simultaneously defined and stored 
through the developed GUI as templates from which 
SURF features were extracted. 2D consequential images, 
from which SURF features were extracted, were provided 
by the video camera and compared to the templates, 
producing the common SURF features. As a result, 
multiple 2D target bounding box areas were defined 
based on the Recognition Qualification Value (RQV) 
from the SURF descriptors and updated from the images. 
Also, the target areas were used to update the template 
data set and used for the laser scanning. Namely, laser 
scanners only update the dynamic target object’s point 
cloud data while keeping the previously scanned static 
work environments.  
 
Object Recognition and Registration: Orthographical projection from 3D to 2D, a process of mapping a 
3D point cloud to a 2D plane, is introduced to recognize and localize the target in a 3D view. Gathered by 
the hybrid laser system, the 3D point cloud is orthographically projected into different 2D planes from 
different directions. Assuming that point O (Ox, Oy, Oz) is orthographically projected onto 2D points 
O1(O1x, O1z) parallel to the y axis, the coordinate values of point O1 can be calculated as follows (Equation 
1):  
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where m is an arbitrary scale factor and n is an arbitrary offset factor, both of which can be used to align 
the projection viewport. Offline templates of the targets are prepared based on different projection angles, 
then stored in the local software database. Individual templates are generated one by one and common 
features are extracted from the corresponding shapes. Projected 2D planes as input of the target recognition 
component are processed online and corresponding shapes and common features are generated from them.  
Similarity comparison between common features from projected 2D planes and those from the templates 
database is then implemented. Finally, comparison qualification values are generated, from which the 
template corresponding to the minimum one is chosen as the process result.  

 
The main challenge from the process of object recognition in this study is to extract the shapes 

from projected 2D planes and compare the corresponding shapes with the prepared templates in the 
database. A local descriptor SURF (Bay, Tuytelaars & Gool, 2008) and the methodology process provided 
by Mikolajczyk et al. (2003) were employed to perform the target shape recognition from 2D planes. The 

 
Figure 3. LIDAR system configuration 

 
Figure 4. Prototype LIDAR system 



 
 

 

whole system is composed of two main stages: 1) reducing ambiguity via a local transformation and 2) 
implementing object detection by estimating a global transformation (Mikolajczyk et al., 2003).   

 
Prepared CAD models correspond one-to-one to the prepared point cloud templates (Figure 5). A 

series of 2D planes are projected from extracted target areas, from which object contours are extracted, 
followed by a filtering process to remove the outliers from the corresponding SURF features. In order to 
filter the extracted features contaminated by outliers, several methods have been proposed with promising 
results, such as the Random Sample Consensus (RANSAC) algorithm (Fisher & Bolles, 1981). In this 
study, a triangle relationship-based filtering method is used to remove the outliers from the feature data 
array.  

 
The output data array 

performs a reverse calculation 
of 3D point cloud to 2D planes 
after the outliers are removed 
from the original contaminated 
features. 3D position 
calculation is the reverse 
projection process from 3D 
point clouds to 2D planes. The 
object is located in the 
projection center of the 
coordinate system, and 
different projection angles can be randomly selected from the laser scanning direction. Based on the 3D 
coordinate value of the object contour, an existing CAD model from a database that has same dimension as 
the object is aligned according to the coordinate values of the object in a 3D view.  

 
RESULTS 

 
In this study, an earthmoving construction equipment operation site was visited to validate the 

proposed framework. Mounted on a mobile cart (Figure 6a), the hybrid LIDAR system gathered point 
clouds with digital images of the job sites that contained different types of heavy equipment and their 
working spaces.  In the job site field tests, a separate data server connected to the hybrid laser system was 
designed to automatically store the scanned data set from dynamic working environments and share the 
data through a wireless communication technology. Multiple equipment operators can access the data 
produced by the LIDAR system via mobile terminals and investigate the real-time situation of the 
surroundings. Figure 6 (b) gives an example of the point cloud data with rapidly registered CAD models of 
three key moving target parts of the excavator: boom, arm, and bucket.  In this experiment, the data 
transferring speed between the LIDAR system and terminals was around 25M/bps, which was fast enough 
to update the scene in real time. The excavator operator selected three independent parts of the equipment 
as targets.  Then the developed system continuously provided time-elapsed 3D scenes of the whole 
working environment with the registered CAD models to help the operator rapidly perceive the 3D 
working environment from different viewpoints.  

 
CONCLUSIONS 

 
In this study, a framework for rapid workspace modeling for construction equipment operations 

was introduced to help heavy equipment operators instantly perceive the 3D working environment at 
dynamic construction sites, and to improve construction equipment operation safety and productivity. This 
method significantly reduces the size of data to collect and process and improves computing efficiency 
while keeping the surrounding spatial information. Field demonstrations were successfully conducted to 
validate the technical feasibility of the proposed framework and hardware systems. Vision-based rapid 
object recognition and tracking was implemented and 3D data were transferred through a local network in 
real time.  

 
Figure 5. Prepared CAD models and generated point cloud templates 

 



 
 

 

 

   
(a) (b) 

            Figure 6. Example of the point cloud data with registered CAD models shown in the operator’s screen: (a) 
hybrid LIDAR system and test environment; (b) Point cloud and registered three CAD models 

 
For future work, the research will continue to improve the resolution of LIDAR data while 

reducing data collection time. With an increase in scanning speed, the scanned resolution is lowered 
accordingly. To resolve this issue, a smart scanning approach with differentiated scan speeds will be 
further developed, to allow faster rotations for the areas to be skipped, and slow the scan speed for the 
target areas. Another alternative is to add one or two more line lasers to the current system, which will 
significantly increase the scan rate.    
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