
 

 

 
 
 
 

AUTONOMOUS ROBOTIC DOZING FOR RAPID MATERIAL REMOVAL 
 

*Gary M. Bone, Scott G. Olsen, and Graham E. Ashby 
1280 Main St. W. 

McMaster University, 
Hamilton, Canada L8S 4L7 

(*Corresponding author: gary@mcmaster.ca) 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

 

 
 
 
 

AUTONOMOUS ROBOTIC DOZING FOR RAPID MATERIAL REMOVAL 
 

ABSTRACT 
 
 The autonomous control of vehicles interacting forcibly with their environment, such as 
dozers and tractors, is an unsolved and challenging problem.  Forces and motions are inherently 
coupled between the tool and the means of vehicle propulsion.  Furthermore, they are often 
operated within uncertain and unstructured environments, such as those encountered in 
underground mining.  There is a growing industrial interest in the development of robotic 
vehicles to improve productivity, efficiency and safety in mining and construction. This paper 
focuses on the modeling and control of autonomous robotic dozing for a material removal 
operation.  A dozing process model has been developed based on observations of both a full-
scale dozer and a scaled-down version. The model characterizes the dynamic interactions 
between the blade position, material accumulation on the blade, material distribution in the 
environment, and the motions of the dozer.  The dozing control objective is to remove the loose 
material as rapidly as possible by driving forwards at full power while automatically 
raising/lowering the blade in response to sensor measurements.  Two different controllers were 
developed to meet this objective.  The first controller is based on a set of heuristic rules, and the 
second is an optimal controller based on the dynamic model.  An instrumented scaled-down 
robotic dozer and dozing environment, designed to emulate the full-scale operation, are used to 
implement the controllers and compare their performances over multiple dozing passes.  
Experimental results are presented showing that the model-based controller increased the 
material removal rate by 33% compared to the rule-based controller.  Lastly, technologies for 
full-scale implementation are discussed, followed by proposed future work and conclusions. 
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INTRODUCTION 
 

The use of autonomous systems is becoming more prevalent in industry due to their 
usefulness in improving safety, as well as reducing operational costs and cycle times.  The 
construction and mining industries are no exception to this trend.  The MineStar/MineGem 
systems developed by Caterpillar and the Automine system developed by Sandvik (Moore, 2006) 
are examples of automation systems that integrate mine operations and equipment management 
including condition monitoring autonomous machine control.  It has been shown that equipment 
related accidents remain a significant safety concern in the mining industry.  A study analyzing 
data from ten years of mining operations safety reports concluded that 37% to 88% of mine 
fatalities attributed to equipment related accidents (Kecojevic, Komljenovic, Groves, Radomsky, 
2007).  Thus, any degree of automation incorporating integrated safety systems can reduce risk to 



 

 

machines, operators and those working in close proximity.  A number of innovative systems have 
been developed to enhance safety in mining operations.  An overview of various safety oriented 
technology is presented in (Ruff, 2003). 

 
The control of mobile machinery which interact forcibly with their environment, such as 

those needed in mining material removal, is a difficult, unsolved problem.  The difficulty arises 
due to the inherent coupling of the tool (e.g., dozer blade) dynamics and those of the vehicle’s 
means of propulsion (e.g., tracks).  Moreover these machines generally operate in unknown and 
difficult terrain, adding to the difficulty.  

 
An application where the resulting improvements in safety and productivity are expected 

to make the research and development efforts worthwhile is the use of autonomous robotic 
dozers to rapidly remove blasted material in a mining operation. An example of a manually 
operated low-profile dozer working in an underground mining environment is shown in Figure 1 
(left).  This application is well suited for robotic dozing due to the safety concerns.  The 
operating environment is shown schematically in Figure 1 (right).  Ore and rock material is 
blasted from the face into the panel where the dozer will operate.  The dozer’s goal is then to 
rapidly move this material into a larger, recessed section termed the gully.  Material is later 
removed from the gully by some other machine or process, such as a load-haul-dump vehicle. 

 
Figure 1 – Left: A low profile dozer, shown with operator. Right: Schematic of the dozer and its operating 

environment  
 

In this paper we present an overview of our work on the modeling and control of robotic 
dozing.  It is important to note that prior research on the control of robotic dozing has either 
involved blade control for leveling soil, e.g., (Ito, 1991), or blade control to limit track slip, e.g., 
(Nakagami, 1997).  Here the control objective is to move the loose material as rapidly as possible 
by driving forwards at full power while automatically raising/lowering the blade in response to 
sensor measurements.  A dynamic model is developed and employed to create a model-based 
optimal controller.  A rule-based controller is also described.  The performances of the two 
controllers are compared experimentally using a scaled-down dozer and environment.  This is 
followed by a discussion of technologies for full-scale implementation, and conclusions.   

 
DYNAMIC MODEL OF ROBOTIC DOZING 

 
A model of the dozing process dynamics is a pre-requisite for developing a high 

performance model-based controller.  A dozer has two tracks, controlled by motors, and a dozing 
blade which can be raised and lowered via an actuator.  The motors provide torque to the tracks 
which in turn applies a shear force to the material below the tracks.  The magnitude of this force 



 

 

depends on the track/material friction as well as the geometry and arrangement of the material 
itself.   Track slip can occur when the force required to move the material forward is greater than 
the traction forces, resulting in a slower speed of the dozer compared to the linear speed of the 
tracks.  So there is a trade-off between the material accumulated on the blade and the forward 
speed of the dozer.  The rate of material removal is the product of the amount of accumulated 
material and the dozer speed.  Raising the blade will tend to decrease the amount of accumulated 
material while simultaneously increasing the speed (and vice-versa).  This observation motivated 
our development of controllers whose objective is to maximize the material rate by 
raising/lowering the blade during each dozing pass. 

 
During the dozing operation it is possible that the dozer could move in any of the six 

degrees-of-freedom (DOF); the blade could move along its one DOF; and the material could be 
arranged in some arbitrary three dimensional geometry.  To focus on the primary low-level 
dynamic behavior, the model is kinematically constrained.  The dozer’s DOF are limited to X and 
Z motion, pitch, and the blade position; and the variations in the environment are primarily in the 
X and Z directions. 
 

 Observations of the full-scale dozing operation led to the conclusion that the overall 
operation could not be characterized by a single continuous dynamic model, and instead belongs 
to the class of hybrid dynamic systems (Branicky, Borkar, Mitter, 1998).  Specifically, the dozing 
process can be decomposed into 10 distinct operational modes, each characterized by a 
continuous dynamic model, and 16 discrete mode transitions. Eight of these modes are illustrated 
in Figure 2.  The set of equations representing the dynamics have the same structure with every 
mode, but their parameters change depending on the mode. The inputs to the system are: br , the 

commanded blade position; and the track control input.  The outputs are the height of 
accumulated material, ad  (see Figure 2d), the dozer speed,bv , the pitch (see Figure 2g), the blade 
position, and the dozer’s X and Z coordinates. 

 

 
Figure 2 – Schematic view of 8 of the 10 operational modes  

 
These modes do not necessarily occur in numerical sequence as there are many mode 

transitions which depend on changes in the operational environment.  Figure 3 shows all of the 
modes and mode transitions, denoted nΣ .  In the “At Start”, “Approach”, “Blade at Edge”, and 

“Reverse” modes, the blade is servoed to a specified position. In the other modes the blade height 
is set by the controller.  The modes are as follows: 

• Mode 0: At Start - Dozer is at rest, in front of the leading edge of the dozing material.  
The blade is just touching the ground surface.  See Figure 2a. 



 

 

• Mode 1: Approach - The dozer moves forward.  See Figure 2b. 
• Mode 2: Engage - The dozer blade contacts the leading edge of the dozing material, and 

the dozer continues to move forward into the dozing material.  Material accumulates on 
the blade, and the dozer tracks remains in contact with the floor surface (i.e., dozer 
elevation does not change).  See Figure 2c. 

• Mode 3: Leveling - If the dozing material is sufficiently high, the dozer climbs the pile.  
This loose material decreases traction.  The blade can be lowered to penetrate down into 
the material pile, and accumulate material more rapidly. See Figure 2d. 

• Mode 4: Pushing - The material pile is of negligible height at the blade, but of significant 
height ahead of the blade.  The blade cannot penetrate further downward, so decreasing 
blade height will not increase accumulation, but will only increase resistance due to 
friction.  See Figure 2e. 

• Mode 5: Scraping - Similar to pushing, except that the material in front of the blade is 
also negligible in height.  See Figure 2f. 

• Mode 6: Disengage - The blade is raised while material is being pushed forward.  
Raising of the blade may cause material to form a localized mound, which the dozer will 
ascend until the blade loses contact with the material and no useful work is 
accomplished.  See Figure 2g. 

• Mode 7: Near Edge - When the blade is within a specified distance aδ of the forward 
edge of the environment, material will be cast into the gully (see Figure 2h).   

• Mode 8: Blade at Edge - The dozer has reached the forward edge of the operational 
environment, the track input is deactivated and the dozer stops. 

• Mode 9: Reverse - The track input is specified to drive the dozer in reverse until it 
reaches the start position. The dozer blade is set to maximum height to avoid contact 
with material.   

 
 

 
Figure 3 – Map of the 10 operational modes, and 16 mode transitions 



 

 

Clearing the requisite material can require multiple passes, that is to say the dozer can clear 
some material, reverse, and clear more the next pass. This cycle is repeated until all the specified 
material is removed, or the desired number of passes is reached. We define a single pass as the 
dozer beginning in mode 0, transitioning through some variety of modes, and ending in mode 8.  
We term a series of passes a trial.  Full details of the model development are provided in (Olsen 
& Bone, 2013). 

 
CONTROLLER DEVELOPMENT 

 
Both a model-based optimal controller and a rule-based controller were developed to 

remove the material as quickly as possible.  The rule-based controller has the advantages of 
requiring no system model, and being simpler to interpret and implement.  This controller is 
described mathematically by the following algorithm: 

1.  WHILE b edgex x<  

2.                  IF ( ) ( ) ( ), , T1a a thresh b b thresd d v v< ∧ ≥ ∧ ¬  

4.                                  b b br r r= − ∆  
5.                                  E N A B LE  T 1  
6.                  ENDIF 
7.                  IF ( ) ( ), T2b b thresv v< ∧ ¬  

8.                                  b b br r r= + ∆  
9.                                  E N ABLE T 2  
10.                ENDIF 
11. ENDWHILE 

 
Where bx is the blade X position, edgex is the X position of the edge of the environment, 

,a thresd is the material accumulation threshold, ,b thresv is the dozer velocity threshold, T1 and T2 

are delay-off timers, and br∆ is the commanded blade position increment.  The delays T1 and T2 
are used to avoid excessive change in blade position due to sensor noise.   
 

A model-based optimal controller was developed next.  Two different cost functions are 
proposed, one for mode 3 and one for modes 2, 4, 5 and 7 where blade control is required.  These 
functions are necessary since we found that the rate of material accumulation is dependent on 
blade position in mode 3, but not in the other controlled modes due to the constraint of the hard 
floor surface.  The cost function to be minimized with mode 3 is: 

 

 2
3 , 1 , 1 3 ,

ˆ ˆa k b k b kJ d v R r+ += − ⋅ + ⋅       (1) 

 

where , 1
ˆ

a kd + and , 1ˆb kv + are the one-step ahead predictions of material accumulation and dozer 

velocity obtained from the measurements and hybrid dynamic model; and R3 is the controller 
tuning parameter for mode 3.  The purpose of the first term in this equation is to maximize the 
predicted material removal rate, while the second term is included to allow the aggressiveness of 
the controller to be tuned.  With the other modes the highest material removal rate is obtained 
when the blade maintains contact with the floor (i.e., minimizing rb) while the dozer travels 
forward as fast as possible (i.e., maximizing vb).  The cost function that accomplishes this 
objective is:  
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, 1 , ,ˆmodeNumber b k b k modeNumber b kJ v r R r+= ⋅ + ⋅                             (2) 

 
with tuning parameter RmodeNumber.  Note that the resulting equations for the commanded blade 
height, rb,k, are functions of the model parameters and tuning parameter for the current operating 
mode. The model parameters were obtained from experimental data using system identification. 
Further details on the controller development are provided in (Olsen, 2012).   
 

Note that the dynamics and control of the disengage mode (Mode 6) are a special case 
beyond the scope of the optimal control development framework.  This mode is undesirable since 
it indicates that the dozer has lost contact with the underlying material, resulting in no bulldozing 
work being accomplished.  The da and vb dynamics of Mode 6 are fundamentally different from 
the other modes.  Consequently, they could not be modeled within the same analytical structure 
of the system equations.  It was found that Mode 6 avoidance can be accomplished with an 
appropriate state dependent blade position constraint imposed in Modes 2-5 and 7.  The results of 
this investigation formed the basis for the development of a blade control law for Mode 6 to 
expedite a transition into a desirable mode (i.e. Mode 6 recovery).  Further details on Mode 6 
dynamics and control are also provided in (Olsen, 2012). 
 

EXPERIMENTAL SYSTEM 
 

The nature of full-scale experimental testing is impractical due to safety, cost and time 
for this type of machine and operation.  As such, a scaled-down dozer and environment were 
developed to emulate the full scale operation.  The dozer, shown in Figure 4 (left), combines a 
tracked vehicle with a dozer blade, position tracking target, and other sensors. The thrust is 
provided by two tracks driven by DC gearmotors.  An actuator, consisting of a DC motor and 
lead screw, is used to move the blade.  The blade measures 45 mm by 220 mm.  Above the blade, 
five optical range sensors measure the height of material accumulated on the blade relative to the 
base of the tracks.  A tilt sensor measures the pitch of the dozer.  Two tracking targets allow the 
position and heading to be measured at 16 Hz using an overhead camera.  A second camera is 
used with a motor-driven laser stripe to measure the height of the material in the environment, 
before and after each dozing pass.  The environment is composed of a 0.5 m by 2 m space 
containing loose material (stones 5 mm to 15 mm in size). 

 

 
Figure 4 – Left: The scaled-down robotic dozer Right: The scaled down environment, with the scaled-

down robotic dozer 
 



 

 

EXPERIMENTAL RESULTS 
 

In order to evaluate the controllers, multi-pass trials were performed. The distribution of 
the material at the start of each trial had a height of 20 mm and a length of 1100 mm.  The 
material removal rate is Q = da·vb·wb, where wb is the blade width (220 mm).  Eight trials (with 4 
passes each) were performed.  The comparison between the results of the optimal and the rule-
based controller is shown in Figure 5.  The per pass results averaged over the set of trials are 
indicated by the bar symbol. The improvement obtained by the model-based controller is most 
obvious in the first pass (37% increase in Q ), when the amount of material in the enviroment 
prior to the pass was greatest.  As the amount of pre-pass material decreased, the distinction in 
the Q values between the controllers tended to diminish (i.e., 29%, 43% and 22% increases after 
passes 2-4, respectively).  Averaged over all of the passes and trials the model-based controller 
improved the material removal rate by 33%. 

  

 
 

Figure 5 –Material removal rate for each pass, averaged over 8 trials  
 

TECHNOLOGIES FOR FULL-SCALE IMPLEMENTATION 
 

The current vision-based localization system and the vision-based laser scanning system 
are not intended for use as part of a full-scale system.  For full-scale above-ground vehicle 
localization, global positioning system (GPS) based methods are becoming well-established for 
real-time vehicle localization and have been implemented on several heavy vehicles (Crane, 
Armstrong, Rankin, 1995), (Le, Rye, Durrant-Whyte, 1997) as well as consumer vehicles 
(Redmill, Kitajima, Ozguner, 2001).  For underground applications various localization 
approaches have been investigated, including artificial beacons, inertial sensors, range finders 
and odometry (Scheding, Dissanayake, Nebot, Durrant-Whyte,1999), (Bakambu & Polotski, 
2007), and (Xiong, Han, Xiong, 2009).  Material profile measurement for automation of mining 
and construction operations may be accomplished via sonar, or laser range finding, e.g., (Stentz, 
Bares, Singh, Rowe, 1999). Another alternative, well-suited for adverse environments, is 
millimeter wave radar (Brooker, Hennessey, Lobsey, Bishop, Widzyk-Capehart, 2007). 

 
FUTURE WORK 

 
Building on the results presented in this paper, there are a number of interesting avenues 

for extending this research.  The overall experimental system scope could be extended to include 
different types of material for dozing, e.g. different sizes and densities of stones and/or soil; 
different blade shapes and sizes; and different floor surface textures.  Furthermore, a more 



 

 

intensive investigation on track-slip could be conducted including detailed modeling and design 
of a control approach for track-slip reduction. 

 
The scope of the bulldozing process could be extended to include additional degrees of 

freedom beyond the current constraints with a single direction of motion, e.g. introducing steep 
slopes to climb and introducing multi-directional planar navigation throughout the task space.  In 
addition to low-level control design, higher-level strategies could be developed involving 
multiple bulldozing robots. 

 
Different control laws could be formulated with different objectives other than to 

maximize the material removal rate.  For example, a related bulldozing task involves blade 
control to achieve desired terrain profile characteristics for construction site preparation.  This 
may entail formulation of a blade position control law with respect to minimizing the error 
between the actual underlying material profile height and a desired material profile height. 

 
CONCLUSIONS  

 
The development of a novel dozing process model and two novel controllers for 

autonomous robotic dozing have been presented.  Based on observations of the full-scale dozing 
operation it was concluded that its dynamics belong to the class of hybrid dynamic systems.  A 
model was then developed consisting of 10 distinct operational modes and 16 mode transitions.  
Next, a model-based controller and a rule-based controller were developed.  The control 
objective for both is to remove the material as quickly as possible.  The rule-based controller has 
the advantages of requiring no system model, and simpler implementation.  However the model-
based controller uses optimization to provide superior performance.  A scaled-down dozer and 
environment were developed to allow experiments to be performed in a safe and cost-effective 
manner.  Eight four-pass dozing trials were conducted.  Overall, the model-based controller 
increased the material removal rate by 33% compared to the rule-based controller.  Technologies 
for full-scale implementation were also briefly reviewed. 
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