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AUTONOMOUSROBOTIC DOZING FOR RAPID MATERIAL REMOVAL
ABSTRACT

The autonomous control of vehicles interactingifady with their environment, such as
dozers and tractors, is an unsolved and challeriolglem. Forces and motions are inherently
coupled between the tool and the means of vehideubsion. Furthermore, they are often
operated within uncertain and unstructured enviremsy such as those encountered in
underground mining. There is a growing industiigkrest in the development of robotic
vehicles to improve productivity, efficiency andfetgt in mining and construction. This paper
focuses on the modeling and control of autonomailmtic dozing for a material removal
operation. A dozing process model has been desdltyased on observations of both a full-
scale dozer and a scaled-down version. The modalacterizes the dynamic interactions
between the blade position, material accumulationtree blade, material distribution in the
environment, and the motions of the dozer. Thangpeontrol objective is to remove the loose
material as rapidly as possible by driving forwards full power while automatically
raising/lowering the blade in response to sensasm@ments. Two different controllers were
developed to meet this objective. The first cdigrds based on a set of heuristic rules, and the
second is an optimal controller based on the dyoamdel. An instrumented scaled-down
robotic dozer and dozing environment, designednalate the full-scale operation, are used to
implement the controllers and compare their perforoes over multiple dozing passes.
Experimental results are presented showing that nioglel-based controller increased the
material removal rate by 33% compared to the raleeld controller. Lastly, technologies for
full-scale implementation are discussed, followggtoposed future work and conclusions.
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INTRODUCTION

The use of autonomous systems is becoming morealgravin industry due to their
usefulness in improving safety, as well as reduapgrational costs and cycle times. The
construction and mining industries are no exceptorthis trend. The MineStar/MineGem
systems developed by Caterpillar and the Automyséesn developed by Sandvik (Moore, 2006)
are examples of automation systems that integrate pperations and equipment management
including condition monitoring autonomous machioateol. It has been shown that equipment
related accidents remain a significant safety conagethe mining industry. A study analyzing
data from ten years of mining operations safetyortspconcluded that 37% to 88% of mine
fatalities attributed to equipment related accidditecojevic, Komljenovic, Groves, Radomsky,
2007). Thus, any degree of automation incorpagatitegrated safety systems can reduce risk to



machines, operators and those working in closeipitx A number of innovative systems have
been developed to enhance safety in mining opesatid\n overview of various safety oriented
technology is presented in (Ruff, 2003).

The control of mobile machinery which interact fibtg with their environment, such as
those needed in mining material removal, is adiffi unsolved problem. The difficulty arises
due to the inherent coupling of the toelg(, dozer blade) dynamics and those of the vehicle’'s
means of propulsiore(., tracks). Moreover these machines generally epénaunknown and
difficult terrain, adding to the difficulty.

An application where the resulting improvementsafety and productivity are expected
to make the research and development efforts waitbws the use of autonomous robotic
dozers to rapidly remove blasted material in a ngnoperation. An example of a manually
operated low-profile dozer working in an undergrdumining environment is shown in Figure 1
(left). This application is well suited for robotidozing due to the safety concerns. The
operating environment is shown schematically inufégl (right). Ore and rock material is
blasted from thdace into thepanel where the dozer will operate. The dozer's goghen to
rapidly move this material into a larger, recessedtion termed thgully. Material is later
removed from the gully by some other machine oc@ss, such as a load-haul-dump vehicle.
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Figure 1 — Left: A low profile dozer, shown withenator. Right: Schematic of the dozer and its dpega
environment

In this paper we present an overview of our worklemodeling and control of robotic
dozing. It is important to note that prior reséamn the control of robotic dozing has either
involved blade control for leveling so#,g., (Ito, 1991), or blade control to limit track sligg.,
(Nakagami, 1997). Here the control objective isimve the loose material as rapidly as possible
by driving forwards at full power while automatilsataising/lowering the blade in response to
sensor measurements. A dynamic model is develapddemployed to create a model-based
optimal controller. A rule-based controller is aldescribed. The performances of the two
controllers are compared experimentally using desedown dozer and environment. This is
followed by a discussion of technologies for fudb&e implementation, and conclusions.

DYNAMIC MODEL OF ROBOTIC DOZING

A model of the dozing process dynamics is a predsgg for developing a high
performance model-based controller. A dozer hasttacks, controlled by motors, and a dozing
blade which can be raised and lowered via an amtudthe motors provide torque to the tracks
which in turn applies a shear force to the matdrédw the tracks. The magnitude of this force



depends on the track/material friction as well teess geometry and arrangement of the material
itself. Track slip can occur when the force regdito move the material forward is greater than
the traction forces, resulting in a slower speethefdozer compared to the linear speed of the
tracks. So there is a trade-off between the natadcumulated on the blade and the forward
speed of the dozer. The rate of material remavahé product of the amount of accumulated
material and the dozer speed. Raising the blati¢end to decrease the amount of accumulated
material while simultaneously increasing the sp@edl vice-versa). This observation motivated
our development of controllers whose objective @& rhaximize the material rate by
raising/lowering the blade during each dozing pass.

During the dozing operation it is possible that tdwezer could move in any of the six
degrees-of-freedom (DOF); the blade could moveaitsmone DOF; and the material could be
arranged in some arbitrary three dimensional gegmefo focus on the primary low-level
dynamic behavior, the model is kinematically casmisied. The dozer's DOF are limited to X and
Z motion, pitch, and the blade position; and theatens in the environment are primarily in the
X and Z directions.

Observations of the full-scale dozing operatiot fe the conclusion that the overall
operation could not be characterized by a singfgicoous dynamic model, and instead belongs
to the class of hybrid dynamic systems (Branickyrkar, Mitter, 1998). Specifically, the dozing
process can be decomposed into 10 distinct opeedtimodes, each characterized by a
continuous dynamic model, and 16 discrete modesitians. Eight of these modes are illustrated
in Figure 2. The set of equations representingdghemics have the same structure with every
mode, but their parameters change depending omdde. The inputs to the system arg; the

commanded blade position; and the track controlutinp The outputs are the height of
accumulated materiatl, (see Figure 2d), the dozer spegdithe pitch (see Figure 29g), the blade
position, and the dozer’'s X and Z coordinates.
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Figure 2 — Schematic view of 8 of the 10 operatiomades

These modes do not necessarily occur in numeralence as there are many mode
transitions which depend on changes in the operatienvironment. Figure 3 shows all of the

modes and mode transitions, denoked In the “At Start”, “Approach”, “Blade at Edge&nd
“Reverse” modes, the blade is servoed to a spdgisition. In the other modes the blade height
is set by the controller. The modes are as follows

* Mode 0: At Sart - Dozer is at rest, in front of the leading eddehe dozing material.
The blade is just touching the ground surface. FBgere 2a.



Mode 1: Approach - The dozer moves forward. See Figure 2b.

Mode 2: Engage - The dozer blade contacts the leading edge of azang material, and
the dozer continues to move forward into the dozivegerial. Material accumulates on
the blade, and the dozer tracks remains in comntéttt the floor surfaceife., dozer
elevation does not change). See Figure 2c.

Mode 3: Leveling - If the dozing material is sufficiently high, thezkr climbs the pile.
This loose material decreases traction. The btadebe lowered to penetrate down into
the material pile, and accumulate material moréhapSee Figure 2d.

Mode 4: Pushing - The material pile is of negligible height at tHad®, but of significant
height ahead of the blade. The blade cannot peedurther downward, so decreasing
blade height will not increase accumulation, bull wnly increase resistance due to
friction. See Figure 2e.

Mode 5: Scraping - Similar to pushing, except that the materiafront of the blade is
also negligible in height. See Figure 2f.

Mode 6: Disengage - The blade is raised while material is being pushmsvard.
Raising of the blade may cause material to formcallzed mound, which the dozer will
ascend until the blade loses contact with the n@teand no useful work is
accomplished. See Figure 2g.

Mode 7: Near Edge - When the blade is within a specified distariggof the forward

edge of the environment, material will be cast thiagully (see Figure 2h).

Mode 8: Blade at Edge - The dozer has reached the forward edge of theatipeal
environment, the track input is deactivated andditeer stops.

Mode 9: Reverse - The track input is specified to drive the dozerr@verse until it
reaches the start position. The dozer blade igosaetaximum height to avoid contact
with material.
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Figure 3 — Map of the 10 operational modes, anth@@e transitions



Clearing the requisite material can require muidtiphsses, that is to say the dozer can clear
some material, reverse, and clear more the nexst p&iss cycle is repeated until all the specified
material is removed, or the desired number of Fassesached. We define a singlss as the
dozer beginning in mode 0, transitioning througmeovariety of modes, and ending in mode 8.
We term a series of passesial. Full details of the model development are prediéh (Olsen
& Bone, 2013).

CONTROLLER DEVELOPMENT

Both a model-based optimal controller and a rulgebacontroller were developed to
remove the material as quickly as possible. THe-lbased controller has the advantages of
requiring no system model, and being simpler terpriet and implement. This controller is
described mathematically by the following algorithm

1. WHILE X, < Xeqge

2. IF(d, < d, eeen ) O(Vo 2 Voyves ) O(=T1)
4. r,=r, —Ar,

5. ENABLE T1

6. ENDIF

7. IF (W < Vowes ) O(=T2)

8. r,=r, +Ar,

9. ENABLE T2

10. ENDIF

11.ENDWHILE

Where X, is the blade X positionx,g iS the X position of the edge of the environment,
d. e 1S the material accumulation thresholdl,,, . is the dozer velocity threshold, T1 and T2

are delay-off timers, andr, is the commanded blade position increment. Thaydell and T2
are used to avoid excessive change in blade positie to sensor noise.

A model-based optimal controller was developed .n&wo different cost functions are
proposed, one for mode 3 and one for modes 2aAd% where blade control is required. These
functions are necessary since we found that the ahimaterial accumulation is dependent on
blade position in mode 3, but not in the other odled modes due to the constraint of the hard
floor surface. The cost function to be minimizeithvnode 3 is:

J3 =0, kau"' Rsﬂbzk 1)

where aavkﬂand Vpis1@re the one-step ahead predictions of materialragtation and dozer

velocity obtained from the measurements and hytiyisamic model; andR; is the controller
tuning parameter for mode 3. The purpose of ttet ferm in this equation is to maximize the
predicted material removal rate, while the secamthtis included to allow the aggressiveness of
the controller to be tuned. With the other modues highest material removal rate is obtained
when the blade maintains contact with the floiog.,( minimizing rp) while the dozer travels
forward as fast as possiblee(, maximizingv,). The cost function that accomplishes this
objective is:



Jmodeumber = Ob,k+1 (8, + Ripdenumber |]b2,k (2)

with tuning parameteRoenumber-  NOte that the resulting equations for the conuteanblade
height,ry, are functions of the model parameters and tupargmeter for the current operating
mode. The model parameters were obtained from ewpetal data using system identification.
Further details on the controller development aowiged in (Olsen, 2012).

Note that the dynamics and control of the disengagde (Mode 6) are a special case
beyond the scope of the optimal control developrframework. This mode is undesirable since
it indicates that the dozer has lost contact withunderlying material, resulting in no bulldozing
work being accomplished. Thl andw, dynamics of Mode 6 are fundamentally differentriro
the other modes. Consequently, they could not béeted within the same analytical structure
of the system equations. It was found that Modav6idance can be accomplished with an
appropriate state dependent blade position consimaposed in Modes 2-5 and 7. The results of
this investigation formed the basis for the deveiept of a blade control law for Mode 6 to
expedite a transition into a desirable mode (Mode 6 recovery). Further details on Mode 6
dynamics and control are also provided in (Ols@&12.

EXPERIMENTAL SYSTEM

The nature of full-scale experimental testing ipiiattical due to safety, cost and time
for this type of machine and operation. As suckcaled-down dozer and environment were
developed to emulate the full scale operation. dbmer, shown in Figure 4 (left), combines a
tracked vehicle with a dozer blade, position tragktarget, and other sensors. The thrust is
provided by two tracks driven by DC gearmotors. aatuator, consisting of a DC motor and
lead screw, is used to move the blade. The blasesures 45 mm by 220 mm. Above the blade,
five optical range sensors measure the height ¢émahaccumulated on the blade relative to the
base of the tracks. A tilt sensor measures tloh it the dozer. Two tracking targets allow the
position and heading to be measured at 16 Hz wmingverhead camera. A second camera is
used with a motor-driven laser stripe to measueehitight of the material in the environment,
before and after each dozing pass. The environiseabmposed of a 0.5 m by 2 m space
containing loose material (stones 5 mm to 15 msiza).

Tracking
targets

Blade
actuator

leadscrew

Figure 4 — Left: The scaled-down robotic dozer Riglne scaled down environment, with the scaled-
down robotic dozer



EXPERIMENTAL RESULTS

In order to evaluate the controllers, multi-passlgrwere performed. The distribution of
the material at the start of each trial had a he@20 mm and a length of 1100 mm. The
material removal rate i® = d,-vy'W,, Wherew, is the blade width (220 mm). Eight trials (with 4
passes each) were performed. The comparison betiveeresults of the optimal and the rule-
based controller is shown in Figure 5. The peispasults averaged over the set of trials are
indicated by the bar symbol. The improvement oletdiby the model-based controller is most
obvious in the first pass (37% increaseQn), when the amount of material in the enviroment
prior to the pass was greatest. As the amounteppass material decreased, the distinction in
the Q values between the controllers tended to diminigh 9%, 43% and 22% increases after

passes 2-4, respectively). Averaged over all efgasses and trials the model-based controller
improved the material removal rate by 33%.

x 109
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Pass Number - Model-based blade control
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Figure 5 —Material removal rate for each pass,ayed over 8 trials
TECHNOLOGIESFOR FULL-SCALE IMPLEMENTATION

The current vision-based localization system amdvikion-based laser scanning system
are not intended for use as part of a full-scalgtesy. For full-scale above-ground vehicle
localization, global positioning system (GPS) basexthods are becoming well-established for
real-time vehicle localization and have been imgetad on several heavy vehicles (Crane,
Armstrong, Rankin, 1995), (Le, Rye, Durrant-Whyti997) as well as consumer vehicles
(Redmill, Kitajima, Ozguner, 2001). For undergrdumpplications various localization
approaches have been investigated, including @atifbeacons, inertial sensors, range finders
and odometry (Scheding, Dissanayake, Nebot, Duki#mtte,1999), (Bakambu & Polotski,
2007), and (Xiong, Han, Xiong, 2009). Material fdleomeasurement for automation of mining
and construction operations may be accomplishedamar, or laser range findingg., (Stentz,
Bares, Singh, Rowe, 1999). Another alternative,l-agted for adverse environments, is
millimeter wave radar (Brooker, Hennessey, Lob&ishop, Widzyk-Capehart, 2007).

FUTURE WORK

Building on the results presented in this papestdhare a number of interesting avenues
for extending this research. The overall experimesystem scope could be extended to include
different types of material for dozing,g. different sizes and densities of stones and/dr soi
different blade shapes and sizes; and differerdr fleurface textures. Furthermore, a more



intensive investigation on track-slip could be coctéd including detailed modeling and design
of a control approach for track-slip reduction.

The scope of the bulldozing process could be extgnd include additional degrees of
freedom beyond the current constraints with a simdfifection of motione.g. introducing steep
slopes to climb and introducing multi-direction#upar navigation throughout the task space. In
addition to low-level control design, higher-levstrategies could be developed involving
multiple bulldozing robots.

Different control laws could be formulated with fdifent objectives other than to
maximize the material removal rate. For exampleglated bulldozing task involves blade
control to achieve desired terrain profile chanasties for construction site preparation. This
may entail formulation of a blade position contlalv with respect to minimizing the error
between the actual underlying material profile hemnd a desired material profile height.

CONCLUSIONS

The development of a novel dozing process model tva novel controllers for
autonomous robotic dozing have been presentededBas observations of the full-scale dozing
operation it was concluded that its dynamics belmnthe class of hybrid dynamic systems. A
model was then developed consisting of 10 distipetrational modes and 16 mode transitions.
Next, a model-based controller and a rule-basedrater were developed. The control
objective for both is to remove the material a<kjyias possible. The rule-based controller has
the advantages of requiring no system model, anglsr implementation. However the model-
based controller uses optimization to provide sopgrerformance. A scaled-down dozer and
environment were developed to allow experimentbeerformed in a safe and cost-effective
manner. Eight four-pass dozing trials were coreflict Overall, the model-based controller
increased the material removal rate by 33% compiaréiue rule-based controller. Technologies
for full-scale implementation were also briefly imwed.
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