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KNOWLEDGE-BASED APPROACH FOR 3D RECONSTRUCTION OF AS-BUILT 

INDUSTRIAL PLANT MODELS FROM LASER-SCAN DATA 

 

ABSTRACT 

 

The three-dimensional (3D) reconstruction of as-built industrial plant models plays an important 

role in revamping planning, maintenance planning, and preparation for dismantling during the lifecycle of 

industrial plants. Recently, the 3D reconstruction of existing industrial plants was conducted using laser-

scan data to make surveying processes more efficient. However, the current 3D reconstruction process 

from laser-scan data is still limited due to the need for significant human assistance. Although a great deal 

of effort has been made to efficiently reconstruct 3D as-built industrial plant models, the presence of 

objects—such as equipment, pipelines, and valves of different sizes and shapes—in existing industrial 

plants significantly increases the complexity of laser-scan data and makes automating the reconstruction 

process more challenging in practice. The purpose of this study is to propose a knowledge-based approach 

for the 3D reconstruction of as-built industrial plant models from unstructured laser-scan data. First, 

pipelines were extracted from laser-scan data based on surface curvature information and knowledge about 

pipelines' sizes from existing piping and instrumentation diagrams (P&ID). Once entire pipelines were 

extracted, they were modeled based on skeleton features. Then, the remaining objects were clustered and 

grouped separately via the region grouping process. Afterward, clustered objects were retrieved and 

modeled based on global feature-based matching from the 3D database. Finally, the resulting model was 

checked to ensure that it was well-reconstructed according to the information regarding the relationships 

among objects abstracted from the existing P&ID. The preliminary results on actual industrial plants show 

that integrating knowledge into the reconstruction steps played an important role in the proposed approach 

and that this approach obtained accurate as-built industrial plant models from unstructured laser-scan data. 

The proposed approach could be successfully utilized to assist in many applications during the lifecycle of 

industrial plants. 

 

 

 

 

KEYWORDS 

 

As-built 3D model, Laser-scan data, Ping and instrumentation diagram, Plant database, Plant information 

model 

 

INTRODUCTION 

 

The three-dimensional (3D) reconstruction of as-built industrial plant models is an important task 

in many fields of application, as it allows for the generation of digital representations of the current statuses 

of existing plant facilities. Various applications demand realistic as-built 3D industrial plant models 

(Veldhuis and Vosselman, 1998; Tangelder et al., 1999; Ermes, 2000). For revamping purposes, planning 

and analyzing in a 3D virtual reality world is much more efficient than relying on 2D information from 

drawings or photographs (Chunmei et al., 2009; Kawashima et al., 2011). For maintenance, accurate 3D 

industrial plant models are indispensable for developing strategies in operational situations. Preparations 

for dismantling also benefit from realistic 3D industrial plant models (Veldhuis and Vosselman, 1998). 

Traditional approaches are largely based on manual interaction and interpretation because with the 

increasing complexity of objects, user understanding is inevitable and paramount for achieving reliable 

results. However, the manual creation of as-built industrial plant models is undoubtedly a rather slow and 

expensive process because of the enormous number of objects involved and the complexity of their shapes. 

With the increasing data complexity, an accurate validation of modeled objects, again, becomes more 



 
 

 

difficult, which is why traditional approaches tend to be impractical. Presently, most of the supporting 

algorithms are data-driven and concentrate on specific object features, being accessible to numerical 

models (see, for example, Rabbani et al., 2006). Using these models, which usually represent geometrical 

features, the laser-scan data can be analyzed successfully when deals with objects with low complexity, 

such as planes or cylinders, but this approach reaches its limits as objects become increasingly complex. At 

that point, purely numerical approaches cannot sufficiently model real-world applications. 

This problem can be effectively solved with additional supplementary and guiding information. 

For example, if the types and numbers of equipment and the valves as well as sizes and numbers of 

pipelines to be modeled are known, the reconstruction process can proceed in an easier, faster, and more 

reliable manner. Whiles, if such information about the scene to be modeled is lacking, it is sometimes 

difficult to process and reconstruct each object in a fully automated manner. Integration of that information 

into the reconstruction process allows for the automated process to be supported instead of requiring one to 

rely merely on human interaction (Tang et al., 2010). In the case of industrial plants, such information can 

be derived from the piping and instrumentation diagrams (P&IDs) as well as from the given industrial 

plants' 3D databases. The P&ID is the overall document used to define the process; it contains an 

instrument list, a pipeline list, and information about their functional interrelationships. An industrial 

plants' 3D database allows the dimensions of each instrument to be drawn. During the reconstruction 

process, these types of knowledge provide relevant guiding information that helps to accelerate the analysis 

and identification processes. 

The aim of this study is to propose a knowledge-based approach that automatically reconstructs 

as-built industrial plant models from unstructured laser-scan data. The remainder of the paper is organized 

as follows. An overview and details of the proposed approach for the 3D reconstruction of as-built 

industrial plant models are provided in Section 2. In Section 3, provided is an explanation about potentially 

helpful data sources for prior knowledge along with the reason for why looking for objects in the 

reconstruction process might still be necessary based on prior knowledge. In Section 4, experimental 

results are provided. Finally, conclusions and recommendations for future research are given in Section 5. 

 

INTEGRATION OF KNOWLEDGE INTO RECONSTRUCTION STRATEGY 

 

Our approach aims to reconstruct detailed industrial plant models from laser-scanned industrial 

plants using a largely automatic process. Laser scanning systems can record industrial plants with a density 

of hundreds of laser points per square meter or more, which is obviously dense enough to recover small 

details. Laser-scanned data acquired from the plant facility can be incomplete because of complex 

occlusion (Johnson et al., 1997; Rabbani et al., 2006; Masuda and Tanaka, 2010), or they can be affected 

by noise due to the reflective surfaces of the instrument and the pipelines. In addition, some applications 

provide only single scans of data; thus, part—and at most half—of the objects' surface is acquired (Zheng 

and Moskal, 2012). In this situation, deciding where the equipment, valves, and pipelines are located and 

even reconstructing their geometry and topology is challenging. 

The core idea employed in the proposed approach is that equipment, valves, and pipelines in the 

industrial plants have a relationship. The contextual constraints consider that the geometric relationships 

among each part can be extracted from the P&ID. By using this supplementary and guiding information, 

the proposed approach allows us to reconstruct as-built industrial plant models from laser-scan data in a 

practical manner. Object knowledge, which is used in the proposed approach, is classified into three 

categories: scene, geometric, and topologic knowledge. In our case, the knowledge information is drawn 

from the existing P&ID and the industrial plant' 3D database. First, the scene knowledge contains all 

relevant object elements that might be found within that scene. In the case of industrial plants, this 

comprises a list of elements such as equipment, valve, and pipeline. Geometric knowledge formulates 

geometrical characteristics of the object elements' physical properties. In our case, this information is 

represented by a few coordinates that express a bounding box containing the element. Topologic 

knowledge represents adjacency relationships among scene elements. In the case of an industrial plant, for 

example, a topological relationship between a davit and a pipeline can be defined, as both must be 

connected. The proposed approach for the 3D reconstruction of as-built industrial plant models, which is 

based on the scene knowledge, geometric knowledge, and topologic knowledge, is illustrated in Figure 1. 
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Figure 1 – Proposed knowledge-based approach for 3D reconstruction of as-built industrial plant models 

 

The reconstruction of industrial plants begins with segmentation of the 3D data at the intersections 

of the pipelines and other industrial parts so as to first extract the pipelines. The segmentation step uses a 

criterion based on a combination of surface normal similarity and spatial connectivity, which is defined by 

Rabbani et al. (2006) as a smoothness constraint. Usually, the extracted pipelines have cylindrical surfaces. 

The pipeline extraction step is based on computing curvature at certain points on the objects' surfaces in 

order to decide if they have cylindrical surfaces with the pipelines' geometric knowledge (radii) drawn 

from the P&ID. This method requires only one-third of an object's surface for computing its radius. Then, 

based on the results of the curvature computation, the objects that belong to the pipelines are identified, 

and all others are regarded as equipment or valves. For details regarding the as-built 3D pipeline extraction 

step, please see Son et al. (2013). 



 
 

 

Once classification is completed, pipelines are modeled based on skeleton features, and others are 

clustered and grouped separately through the region grouping process. When grouped, each cluster 

represents equipment or valve groups. Then, the modeling process begins in an effort to model the valves, 

which are also called inline items and are located between pipelines. In the 3D database, a number of types 

of valves exist; even the same type of valve has several dimensions according to the adjacent pipelines' 

radii. In order to efficiently model the valves, two types of knowledge—geometric knowledge 

(dimensions) drawn from the 3D database and topologic knowledge (what the valve types are and the 

number of valves located in the pipeline)—are used. If a cluster satisfies the condition, the cluster is 

classified as belonging to the valve group. Then, the valve models are matched and retrieved based on this 

knowledge. 

Afterward, the remaining clusters represent the equipment group. In the 3D database, a number of 

types of equipment are also present, and with respect to their use, the dimensions of several pieces of 

equipment slightly differ from one another. In order to efficiently model the equipment, two types of 

knowledge—geometric knowledge (dimensions) drawn from the 3D database and topologic knowledge 

(what type of pipelines are connected)—are used. By matching and retrieving data based on this 

knowledge, a cluster that corresponds to a particular type of equipment is modeled. 

 

REPRESENTATION AND USE OF KNOWLEDGE 

 

The representation and use of knowledge have already been suggested as a possible solution for 

reconstructing objects from a 3D point cloud (Cantzler et al., 2002; Boochs et al., 2011). Recently, there is 

a growing consensus about such prior knowledge can assist the 3D reconstruction process of an existing 

large-scale facility, as this knowledge can serve as guidance in the construction industry (Tang et al., 2010). 

This chapter provides a detailed description and example of the use and representation of knowledge that is 

used in our approach for the 3D reconstruction of as-built industrial plant models. The chapter focuses on 

where the knowledge comes from, what knowledge is drawn, and how the knowledge is represented. 

 

Scene Knowledge 

 

From the existing P&ID, we can extract an instrument list consisting of equipment and valves 

(also called inline items) and a pipeline list. With respect to the plant facilities' sizes, the instrument and the 

pipeline lists can be several hundreds to hundreds of thousands of lines. Table 1 reveals a short example 

that comes from part of the existing P&ID. By using this information, we can understand which objects 

might be recognized and modeled. In addition, as a starting point, we can extract more detailed information 

about the objects listed in the scene, such as the objects' dimensions or the relationships among the objects. 

 

Table 1 – Grouping of scene elements in the case of an industrial plant 

 Tag 

Equipment DV-2101 

 PU-2101A 

 PU-2101S 
. . . 

Inline Items Check Valve 1-10” 

 Gate Valve 1-10” 

 Gate Valve 2-10” 

 Globe Valve 2-10” 

 Glove Valve 1-14” 
. . . 

Pipelines 10”-EC-21006-A26 

 10”-EC-21008-A26 

 10”-EC-21039-A26 

 14”-EC-21007-A26 

 14”-EC-21038-A26 
. . . 

 



 
 

 

Geometric Knowledge 

 

From the existing 3D database, we can extract the dimensions (height, width, and depth) of each 

instrument (equipment and inline items). The bounding surfaces of the computer-aided design (CAD) file 

are represented in a simple file that denotes the coordinates of each vertex of the triangle. From this file, 

we can compute and store each instrument's dimensions with its tagged name. For the pipelines, the first 

two letters of the tagged names indicate their radii information in inches. Table 2 provides a short example 

that comes from part of the existing P&ID and 3D database. The geometric knowledge is used to decide 

each segment that belongs to the pipeline group as well as the groups of equipment or inline items to which 

each cluster belongs following the region grouping step. Then, this geometric knowledge is used for 

matching and retrieving steps in the equipment and inline item modeling. 

 

Table 2 – Dimensions of each scene element extracted from the P&ID and 3D database 

 Tag Dimension (mm) 

Equipment DV-2101 2,600*7,700*5,200 

 PU-2101A 1,750*750*1,200 

 PU-2101S 1,750*750*1,200 
. . . 

Inline Items Gate Valve 1-10” 400*400*1,400 

 Gate Valve 2-10” 400*400*1,400 

 Globe Valve 2-10” 600*650*1,100 

 Check Valve 1-10” 600*550*600 

 Glove Valve 1-14” 650*850*950 

 
. . .  

Pipelines 10”-EC-21006 127 

 10”-EC-21008 127 

 10”-EC-21039 127 

 14”-EC-21007 177.8 

 14”-EC-21038 177.8 

 
. . .  

 

Topologic Knowledge 

 

From a semantic view, topological properties describe adjacency relationships among objects. A 

computer-aided system is developed to execute the analysis automatically by encoding knowledge that is 

related to process control engineering (PCE) in rules so that they can be applied to a given set of P&ID in 

order to produce the corresponding cause & effect (C&E) diagram (An et al., 2009). By exporting the 

P&ID as a form of the C&E diagram, we can figure that the spatial relationship (connectivity and 

adjacency) between objects is that they are “connected from A to B.” This information is helpful for 

characterizing each cluster as well as for directly identifying the clusters, as each cluster has a unique 

relationship. 

 

Table 3 – Cause and effect table in Excel for P&ID example 

Tag To From Inline Items 

10”-EC-21006 DV-2101 HE-2101  

10”-EC-21008 RE-2101 PU-2101A Check Valve 1-10” 

Gate Valve 1-10” 

Gate Valve 2-10” 

Globe Valve 2-10” 

10”-EC-21039 10”-EC-

21008-A26 

PU-2101S Check Valve 1-10” 

Globe Valve 2-10” 

14”-EC-21007 PU-2101A DV-2101 Glove Valve 1-14” 

14”-EC-21038 PU-2101S 14”-EC-21007 Glove Valve 1-14” 

 



 
 

 

CASE STUDY/EXPERIMENTAL RESULTS 

 

The proposed approach described was applied to real experimental data, including cases of 

partially occluded parts. Laser-scanned data was acquired from the chemical plant located in Yeosu, South 

Korea (Figure 2). ScanStation C10 by Leica Geosystems was used to acquire a 3D point cloud. Figure 2(a) 

shows the laser-scanned data of the test scene. This scene includes two types of equipment (a davit and two 

pumps), three types of valves (two check valves, two gate valves, and four glove valves), and two types of 

pipelines (which have radii of 127 mm [a total of three pipelines] and 177.8 mm [a total of two pipelines]). 

Figure 2(b) shows the result of the segmentation of the point cloud in Figure 2(a). In this figure, different 

segments are displayed using different colors. This figure shows that the segmentation approach based on a 

smoothness constraint actually divided the point cloud at intersections among pipelines and other industrial 

parts, while a pipeline is preserved as one segment. 

 

  
(a)                                                                                  (b) 

Figure 2 – (a) Laser-scan data; (b) Segmentation of the point cloud 

 

Figure 3(a) shows the result of the pipeline classification. In this figure, red-colored points 

indicate the extracted pipelines, while blue-colored points indicate how the point cloud corresponds with 

equipment and valves. This step was validated for the precision rate, and the precision rate shows that the 

percentage of extracted pipelines is calculated as the number of true pipelines over extracted pipelines. The 

precision rate of the proposed pipeline extraction was observed as being 100%. Figure 3(b) shows that the 

segments correspond with others by deleting the segments that were classified as pipelines in the previous 

step. As shown in Figure 3(b), we can find the over-segmentation problem. In order to resolve this over-

segmentation problem, region grouping is performed to merge adjacent segments. 

 

   
(a)                                                                                  (b) 

Figure 3 – (a) Pipeline classification; (b) Segments correspond with others 



 
 

 

Figure 4(a) shows the results of clustered segments by region grouping. Here, each of the 

combined segments is displayed using different colors. As shown in Figure 4(a), two types of equipment (a 

davit and two pumps) and three types of valves (two check valves, two gate valves, and four glove valves) 

were accurately grouped together by merging over-segmented parts. For each cluster, the neighborhood 

segments that corresponded with the pipeline groups were then searched. Afterward, their relationship was 

represented for the purpose of comparing the 3D point cloud and the topologic knowledge extracted from 

the P&ID. The blue-colored bounding boxes in the Figure 4(a) shows the results of global feature 

computation. Based on the geometric and topologic knowledge, each cluster can be modeled by matching 

and retrieving CAD models from the 3D database. 

Figure 4(b) shows the results of the proposed approach for the 3D reconstruction of as-built 

industrial plant models. From the experimental result, one can conclude that the proposed approach can be 

used to automatically model the as-built industrial plants without any manual intervention. The knowledge 

used in the reconstruction process is helpful for characterizing and identifying the various objects in the 

laser-scan data. In addition, the reconstructed as-built industrial plant models not only have geometric 

properties but also their semantic information can be used for various purposes in revamping planning, 

maintenance planning, and preparation for dismantling during the lifecycle of industrial plants. 

 

  
(a)                                                                                  (b) 

Figure 4 – (a) Clustered segments by region grouping; (b) 3D reconstruction result 

 

CONCLUSIONS 

 

This paper proposes a knowledge-based approach to automatically reconstructing as-built 

industrial plant models from unstructured laser-scan data. The proposed approach makes use of available 

knowledge in the reconstruction of as-built industrial plant models—for example, knowledge that is 

extracted from the existing P&ID. This prior knowledge was modeled, representing a basis for the 

decisions made during the reconstruction process. Scene, geometric, and topologic knowledge was used to 

characterize and identify objects in the laser-scan data. The feasibility of the proposed approach was 

validated in an experiment using real laser-scanned data obtained from an operating industrial plant. 

The results demonstrated that the proposed approach can successfully model the as-built 3D 

industrial plant from laser-scanned data, with knowledge being present. In other words, the proposed 

approach offers a practical solution for 3D as-built industrial plants reconstruction. During this process, all 

object models were tagged with their information predefined in the P&ID. Thus, the reconstructed model 

can be used for various managerial purposes. Nevertheless, the proposed approach was validated and tested 

for a rather simple case. For the purposes of practical uses, future research will focus on the validation of 

more complex scenes as well as on improvement of the proposed approach. 
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