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ABSTRACT

The integration of three-dimensional (3D) data witfrared thermography has received much
attention for its potential use as input data failding energy simulations. Therefore, researcherge
proposed methods to integrate 3D data with infrahedtmography obtained by different sensors. These
studies show the potential of the integration of &a and infrared thermography using various syste
However, these studies have ignored property aspédnfrared thermography, such as the low resmiut
of infrared thermography and external environmeintiflences. Thus, their proposed methods to iatiegr
3D data and infrared thermography are inadequatause these problems can affect the resultingibgild
energy simulation. This research proposes a framethat integrates infrared thermography and 3xdat
while accounting for the resolution and shadowetftd infrared thermography. The proposed framework
consists of three steps. In the resolution enharmoestep, bi-cubic interpolation is proposed. lerthal
data correction from the shadow effect, the shadoea is detected from the visible image, and then t
shadow effect is removed from the registered ieflathermography. Finally, enhanced infrared
thermography is mapped to the 3D data obtained aser scanner. The performance of the proposed
framework was evaluated using test images obtdnoaa a building in operation. The experimental tesu
show that the proposed framework provides a 3Dnthkmodel that is useful and accurate in simulating
building energy. It is expected that the 3D thermaldel can be used for accurate energy simulatfon o
existing buildings. In addition, the proposed fravoek can be applied in defect detection for buidin
Furthermore, this novel approach enhances infrdm@tography using visible images.
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INTRODUCTION

The integration of three-dimensional (3D) data witfrared thermography has received much
attention for its potential use as input data foilding energy simulations that aim to increase éhergy
efficiency of existing buildings. Building energirailation programs requires information about hinis,
such as their geometry, material, internal loadsl weather conditions (Azhar & Brown, 2009). This
information directly affects the results of the Idiig energy simulation, so it is important to dbta
accurate data about the building. A laser scanneviges accurate 3D data about the geometry of a
building (Kim et al., 2013). Thermal infrared cam&measure the surface temperature of externas,wall
doors, and windows and represent the results esr@uaf thermography. Infrared thermography can lee us
to measure emissivity (Avdelidis & Moropoulou, 2Q00@nd the heat transfer coefficient (Fokaides &
Kalogirou, 2011) of building materials. Therefotke integration of 3D data with infrared thermodrap
can generate information about existing buildingsupport decisions about how to increase the imgjd
energy efficiency.

Recently, researchers have proposed methods tgramée3D data with infrared thermography
obtained by different sensors in a different dimemsAlba et al., (2011) outlined a procedure topma
infrared thermography to 3D data using a bi-cansgstem that consists of a thermal infrared camedsaa
digital camera. Before obtaining the infrared thegnaphy and 3D data, the relative orientation and
position of the thermal infrared and digital canseeae calculated based on the fixed positions ef th



cameras. Then, infrared thermography and visibkgis are obtained using the bi-camera system,@and 3
data is obtained using a laser scanner. To mathnfiared thermography and 3D data, control points
between the visible image and 3D data are seleni@aually. Wang et al., (2012) developed a hybrid
system that uses a thermal infrared camera and daaener to fuse infrared thermography with 30adat
The relationship between infrared thermography2Ddiata is built, and then, the window area is det
Afterward, virtual 3D data for inside of the windasvgenerated, and infrared thermography is fusdte
window area. Laguela et al., (2013) proposed a otetb generate an infrared thermography-textured as
built model that combines 3D data and infrared rtiegraphy without fixing the relative position ofeth
sensors. The two-dimensional (2D) features areaetad from the infrared thermography, and the 3D
features are extracted from the 3D data. Theninfih@red thermography and 3D data are registersdda
on the extracted 2D and 3D features. Finally, ttoarthographic projection, the infrared thermodmap
textured as-built model is generated.

These preliminary studies propose and show thenpatef frameworks to integrate 3D data and
infrared thermography using various systems. Howethese earlier studies ignored the property daspec
of infrared thermography that can affect the rasglbuilding energy simulation. Low resolution Iset
first property aspect of infrared thermography. Téest thermal infrared camera obtains thermograph
with a resolution of only 640x480 (FLIR, 2013), whiis much lower than the 3D data that obtaine@d by
laser scanner. To accurately analyze the enerdgrpeance of existing buildings, all points in thB 8ata
should correspond with each pixel in the infrareertography. However, the low resolution of infdare
thermography makes it impossible to map infrareztrttography to 3D data pixel-to-pixel. The second
property aspect of infrared thermography is exteem&ironmental influences. The temperature vabre f
infrared thermography may be inaccurate becausextdrnal environmental factors, such weather,
sunshine, and shadows from eaves or adjacent bgdidiBalaras & Argiriou 2002). Especially when
obtaining infrared thermography from a building idgrthe daytime, shadows will almost certainly be
projected onto the building’s exterior. These sheslavill result in surface temperature measurements
lower than the real temperature. Earlier studidsndit consider procedures to solve these two pnadlso
their proposed methods to integrate 3D data amdried thermography are unsatisfactory.

The main objective of this research is to proposdraanework that integrates infrared
thermography and 3D data that accounts for thelutso and shadow effect of infrared thermography.
The following chapter describes the proposed fraomkwand methods. Next, the field experimental rssul
obtained by the proposed framework are presentetifinally, conclusions and recommendations for the
direction of future research are provided.

METHODS

This research proposes a framework for integratieg3D data and the infrared thermography to
generate the 3D thermal model, and the proposeuefrmrk is shown in Figure 1. The proposed
framework consists of three steps: (1) resolutiphamcement of the infrared thermography; (2) thérma
data correction from the shadow effect; and (3)rrtta¢ data mapping. The first step, resolution
enhancement of the infrared thermography, allowsafoincrease of infrared thermography resolutisn a
high as the resolution of the 3D data obtainedgikiser scanners. Generally, the resolution of/isible
image that comes from a digital camera is highantthe resolution of the 3D data that comes froen th
laser scanner. Therefore, the resolution of theaiefl thermography is increased as high as théutzso
of the visible image. The second step is the thedata correction from the shadow effect. The prigjed
shadow on the external wall or window of the builglresults in the surface temperature being medsure
as lower than the real temperature. Measuremethteoiower temperature because of this shadow leads
an inaccurate analysis of the building status bezadefect detection using infrared thermography is
performed by identifying abnormal temperature areaspared with their surroundings. Therefore, the
shadow effect of the infrared thermography shoudrémoved. However, the infrared thermography
contains information about the temperature, and itifficult to detect shadows using only infrared
thermography. Thus, visible images that able toeaetshadows are registered with the infrared
thermography, and then, the shadow area in thargdrthermography is corrected based on the ddtecte
shadow area of the registered visible image. Bindtle third step is thermal data mapping, usethap



the enhanced infrared thermography to the 3D d&famapping the enhanced infrared thermography to

the 3D data, a 3D thermal model that can be usedafious applications is provided.
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Figure 1 — Flowchart of the proposed method
Resolution Enhancement of the Infrared Ther mography

Image resolution enhancement is an image procegsowgedure that produces a high-resolution
image from a low-resolution image. The image resmuenhancement is performed by interpolation that
constructs a continuous function from discrete dampCha & Kim, 2006). The thermal value in the
infrared thermography is increased or decreasedthtyowithout much variation in the neighborhood at
the same component or material. To account fopthperty of the infrared thermography, the algarth
interpolates a thermal value based on its neighdmathThe popular interpolation algorithms are nstare
neighbor, bi-linear, and bi-cubic. The bi-cubicergolation algorithm makes smoother images thathdo
others (Kalpoma et al., 2013). Therefore, the Ilhicinterpolation is adapted to increase the regoiof
the infrared thermography.

The bi-cubic interpolation uses 16 pixels in thenest 4x4 neighbor in the original image to
generate a new pixel. Because these 16 pixels aieug distances from the new pixel, the weight is
inversely proportional to the distance.



Thermal Data Correction from the Shadow Effect

The primary properties of a shadow are lower intgnkigher saturation, and higher hue values
than its surroundings in the visible image (Loreetial., 2012). Most shadow detection algorithres ar
based on these shadow properties. Early researshamow detection noted that shadow areas have less
intensity (Polidorio et al., 2003). Gray imageslg&sl satisfactory results, but for color imagesn-no
shadow areas with darker colors were misclassitisd shadow areas. A method using chromatic
information (hue and saturation) that Sarabandil.e2004) proposed was used to detect shadowsoand
remove shadow effect in a visible image. As a poE@ssing step, a visible and high-resolution nefta
thermography is registered before shadow detecfidren, color space transformation and shadow
classification are performed on the visible imaBased on the classified shadow region in the \asibl
image, a shadow region in the registered infranednbography is classified. Finally, the shadow affe
removed from the infrared thermography.

Color Space Transformation

In order to classify shadow in the visible imagee tolor space transformation is performed.
Many traditional color spaces can be used to dlastiadow regions in the visible image, such as
normalized rgb, Hue-Saturation-Value (HS\{);l}, and gc,c; (Salvador et al., 2001). Among these color
spaces, {€,C; (Gevers & Smeulders, 1999) shows best resultiagsify shadow regions in a visible image
(Salvador et al., 2001; Sarabandi et al., 2004¢. d&yc; color space is defined as follows:

C = arcta{m] Q)
C, = arCta'EmaxLR,B)J (2)
C3= arcta{ﬁ’eﬂ 3)

where R, G, and B is red, green, and blue valuesicii pixel in the visible image.

Shadow Classification

A shadow region in the;¢,c; color space is an area inside of the boundaryhthsta pixel value
different from its surroundings. Therefore, thedsha boundary is identified to classify a shadowepix
the visible image. To identify the shadow boundang, local variance of each pixel and its neighboth
is measured usings component among;cc,, and g and applying a 3-by-3 filter. The local varianse i
defined as follows (Sarabandi et al., 2004):
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The high variance value is the boundary betweensti@ow and non-shadow region. After
identifying this boundary, the shadow region ised&td by classifying pixels inside of the boundasy
shadows. Shadow classification in the visible ime&gshown in Figure 2. In Figure 2(c), the whitear
depicts the shadow; the black depicts the non-shadea.



(b)
Figure 2 — (a) Visible image; (b) shadow boundafiiem the visible image; (c) shadow detection friva
visible image

Removal Shadow Effects

By detecting the shadow region in the visible imatipe shadow and non-shadow regions are
classified in the infrared thermography, whicheagistered with the visible image. The shadow eféaat
be removed by defining the relationship betweenpilkel value of the shadow region and the non-sthvado
region. In previous research that proposed an ifiigorto remove the shadow effect in a visible imabe
relationship between the pixel value of shadow aod-shadow regions was verified as reasonablydinea
(Lorenzi et al., 2012; Sarabandi et al., 2004). $hadow effect thus can be removed via a lineastiom,
as shown in equation 6 (Sarabandi et al., 2004).

_ T non—shadow
DN recovered = (DNshadow - :umadow)"' Hnon-shadow (6)
O shadow

where 4 is the mean, and is the standard deviation of the shadow and nawtalv region.

Thermal Data Mapping

Thermal data mapping is performed using an autainatethod proposed by Laguela et al.,
(2013). This method has an advantage over the ©fhethat no fixed relative position exists between
sensors. Therefore, infrared thermography can beredd from any desired position. The mapping metho
that Laguela et al., (2013) proposed consistsvef §teps. First, 2D features are extracted fronintared
thermography. Second, 3D features are extracted fiee 3D data. Third, the orientation parameter is
computed based on the 2D and 3D features to redisegmography and 3D data. Fourth, infrared
thermography projection is performed to map infdatbermography to the mesh model, which is
generated from the 3D data. Finally, orthographajeztion is performed to generate orthothermograms

FIELD EXPERIMENT
Resolution Enhancement

In order to verify the performance of the bi-cubiterpolation in resolution enhancement of the
infrared thermography, nearest-neighbor, bi-lin@erg bi-cubic interpolation are compared. Firstest
image is downsampled from 640x320 to 320x240. Thesplution of the downsampled infrared
thermography is enhanced by using nearest-neighidinear, and bi-cubic interpolation. The resauat
enhancement results of each interpolation algorignenshown in Figure 3. In Figure 3 (a), (b), aod (
illustrate the results of nearest-neighbor, bidinend bi-cubic interpolation, respectively. Figmid), (e),
and (f) are the magnified portions of Figures (h), and (c), respectively. As shown in Figure®, the
mosaic effect appeared in the case of nearestin@ighterpolation. Otherwise, there is no mosafedafin
the results of bi-cubic interpolation.



(d) (e)
Figure 3 — (a) Nearest-neighbour interpolation;iHjnear interpolation; (c) bi-cubic interpolatip(d)
the magnified portion of (a); () the magnified tpm of (b); (f) the magnified portion of (c)

To compare the nearest-neighbor, bi-linear, ancubie interpolation quantitatively, Peak Signal-
to-Noise Ratio (PSNR) is used. PSNR is a commonsoreanent method in imaging processing that is
used to measure the difference between two imagessfosha et al., 2009). A higher PSNR value means
better image quality. Table 1 shows the PSNR ofastaneighbor, bi-linear, and bi-cubic interpolati®i-
cubic interpolation achieves the highest PSNR teit image.

Table 1 — Comparison of interpolation performance

M ethod Nearest-neighbor Bi-linear Bi-cubic

PSNR (dB) 80.3295 83.8246 87.3500

Thermal Data Correction from the Shadow Effect

Following the procedures in the proposed methoduréi 4 shows the results of thermal data
correction. As shown in Figure 4 (a), a shadow pragected onto the left external surface and hofethe
right external surface of the building. The tempama value of the shadow region was lower tharréad
temperature in the Figure 4 (b). The dark coloresents low temperature. By comparing that with the
original infrared thermography, the temperatureigah the shadow region was corrected in Figure) 4 (

e

(c)
Figure 4 — (a) Visible image; (b) infrared thermexgiy; (c) shadow-corrected infrared thermography



Thermal Data Mapping

Following resolution enhancement and thermal dataection from the shadow effect, infrared
thermography is high-resolution and contains caeecthermal data from the shadow effect. This
thermography is applied to the 3D data by usin@#8PR matching method, such as the one describdd tha
Laguela et al., (2013) described. Figure 5 showes3h thermal model generated by using this 2D/3D
matching method. This 3D thermal model containsugate information that can be used to simulate
building energy.

Figure 5 — 3D Thermal model

CONCLUSIONS

This research proposed a framework that integratésred thermography and 3D data in
consideration of the resolution and shadow effédhe infrared thermography. In order to integrtte
infrared thermography and the 3D data, the framkwuorolved three steps: (1) resolution enhancerént
the infrared thermography; (2) thermal data coroectrom the shadow effect; and (3) thermal data
mapping. The experimental results show that thegsed framework provides a 3D thermal model that is
applicable to simulate building energy. It is exeécthat the 3D thermal model can be used for ateur
energy simulation of the existing building. In atifth, the proposed framework can be applied toadefe
detection for the building. Furthermore, this novapproach was proposed to enhance infrared
thermography using visible images. This fusion apph of these different kinds of sensors will be th
best way to enhance the data.

Although interesting results have been achievell,fgither methodological improvements are
required. First, bi-cubic interpolation generatdy effects and loses edge-information of the dbjét
order to overcome the shortcoming of the bi-cubteripolation, the adaptive interpolation algorittimat
applies different interpolation algorithms accoglito direction of the edge will be proposed. Secand
problem still exists with the detection of dark etts as shadows. To accurately detect shadow egion
other features will be used to classify shadowthévisible image. In addition, future researcH fatus
on the generation of a physical model to use agstifgy the building energy simulation program.
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