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RUST SURFACE AREA DETERMINATION OF STEEL BRIDGE COMPONENT FOR
ROBOTIC GRIT-BLAST MACHINE

ABSTRACT

There has been increasing interest in the uselmftiomachines, and several prototype robotic
machines have been developed to automate the Igsitisiy process for the purpose of steel bridge
maintenance. To utilize such a robotic grit-blastichine effectively, the first consideration is an#ding
the determination of the rust surface area to ptasthe basis of standards of practice, in a rapdner.
This study aims to propose a method to rapidly aocurately determine the rust surface area on steel
bridges to blast, with consideration for the staddaof practice, from images acquired via a blgstin
machine. The first step is to perform a color spaoaversion to transform the input image from a
red/green/blue (RGB) color space to a hue/satuvétiensity (HSI) color space. The next step idétect
the presence of rust, using pixel-level classiftoatvia the C4.5 decision tree algorithm. Thensit i
necessary to confirm the blasting area by verifyirigether the rust detection result satisfies thexiied
criteria on the basis of standards of practice. ptoposed method was validated on 39 test imagts wi
various characteristics with respect to the degrferusting and rust distribution type. The experinad
results showed that the average accuracy ratesbfiraa classification was about 97.63%, and theesis
rate of the final decision of blasting area deteatibn was 100.00% for 39 test examples. The whole
processing time took an average of only 0.86 sexped image. The preliminary results demonstrdiatl t
the proposed method not only determined whethénvas present in an image and the amount of rust bu
also indicated whether blasting was necessary, ianegcessary, it rapidly specified the rust suefacea
that should be blasted on the basis of standargsaufice. The proposed method could be succegsfull
incorporated into a robotic grit-blast machine.
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INTRODUCTION

The deterioration of a steel bridge surface is masbly observable in the form of rust (Chen et
al., 2011; Lee, 2011). Rust decreases the coatiatitg, which can affect the service life of a $teadge
(To et al., 2010; Paul et al., 2011). If the suefaast on a steel bridge is not removed, it carersdy
reduce the structural strength of the bridge, wiiécthe primary cause of failure in such bridgekit§Set
al., 2006; Liu et al., 2008). Therefore, the suefaast should be removed, and then the blastedsamdd
be repainted. In practice, such rust removal isedby manual grit-blasting; however, it is dangerous
because workers are exposed to harmful substanckgling lead and asbestos (To et al., 2010; Peaal.,
2011). Furthermore, manual grit-blasting is anaxiely labor-intensive and time-consuming proceds (L
et al., 2008). When considering the number of dtéeges that must be maintained, the problem besom
much worse.

To solve this problem, there has been increasitgrant in the use of robotic machines, and
several grit-blast machines have been developeditmimate the grit-blasting process. Examples cfethe
machines include the Robotic Bridge Maintenancete®ys(Lorenc et al., 2000), Automated Abrasive
Blasting System (Echt et al., 2000), and AutonomeXsgloration to Build a Map System (Paul et al.,
2011). Typically, these machines automatically toeasdefined rust surface area selected by a remote
operator based on a map obtained through sensaratetbon the robotic machines. Because the remote
manipulator relies heavily on subjective humanoarisio select the rust area for grit-blasting, idiicult
to select an accurate and optimized area (Shih,&2(06). Moreover, such a manual process is itapet
as a result, it remains ineffective in terms ofdimnd cost. Therefore, in utilizing a robotic dpi&st



machine, the first consideration is the automatibthe determination of the rust surface area fasting.

In recent years, several studies have proposedonetto automatically detect rust on a steel
bridge (for example, Lee et al., 2006; Chang et2d11; Ghanta et al., 2011; Chen et al., 2012gs€h
studies show the potential for automatic rust d&tecvia image processing techniques in an outdoor
environment that includes various disturbancesh sag illumination variance and various rust colors.
However, there is a lack of consideration of tirperg to detect the presence of rust in the imageaBse
steel bridges may have considerable surface atleasust detection process should be capable af nea
real-time performance. Although near real-time mestection is desirable, previous studies havesedu
solely on rust detection accuracy.

In addition, a common limitation of these studisstlhe lack of consideration of practical
requirements. In practice, the determination ofdhea to blast is accomplished based on the ssadédr
the American Society for Testing and Materials (AM§T2012) and the Steel Structures Painting Council
(SSPC, 2000). According to these standards, theeptage of rusting as well as the rust distributigre
are considered in determining the rust surface fmeblasting. Although there is a need for a sqosat
procedure and method to determine automaticallyadmjelctively the area to blast, based on the staisda
previous studies have limited themselves to detgdtie presence of rust in the image.

The aim of this study is to propose a method ftialoée and near-real-time determination of the
rust surface area to blast from images acquired\damera mounted on a robotic grit-blast machima o
steel bridge. The following chapter describes thaméwork of the proposed rust surface area
determination method. The next section then presémt experimental results obtained through the
proposed framework. The paper closes with conahgsémd recommendations for future research.

FRAMEWORK OF THE PROPOSED RUST SURFACE AREA DETERMINATION METHOD

The proposed method not only determines whethdrisugresent in an image, along with the
amount of rust but also indicates whether blasiingecessary and, if necessary, where blastingldteu
performed. First, a color space conversion trams$athe input image from an RGB color space to ah HS
color space. Then pixel-level classification isfpemed to detect the presence of rust. For thisgss, we
need to choose the most appropriate classifiers&y achieving both speed and performance. Therefore
this study selects the best classifier by computind comparing the performance of rust classificati
models from six different classifiers via 10-foldoss validation. The classifier selection process i
performed only once. After that, the rust surfacesads determined by verifying whether the rusedeon
result satisfies the specified criteria. The speditriteria used in this approach are based onldigeee of
rusting on a scale of 0 to 10 and the rust distidoutype (i.e., spot rusting, general rusting, aitpoint
rusting) as defined by the ASTM (2012), also refdrto in Chen et al. (2012), and the SSPC (2000). A
detailed description of the processes and methadgravided in the following sections.

Color Space Conversion

The robotic grit-blast machine for steel bridge mb@nance acquires color images in an outdoor
environment, where the appearance of objects ectaffl by changes in illumination and causes false
detection. Therefore, the acquired image is coedetb the HSI color space, which is invariant to
illumination changes (Wesolkowski, 1999). The RGHoc space can be converted to the HSI color space
using the following formula (Cheng et al., 2001):

\/_ - min(R, G, _(R+G+
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Classification of Rust Area

To detect the presence of rust in the input imagayst classification model is trained from the
training set. Then the trained classification moidelised to classify each pixel in the input image
belonging to rust or the background. In this stuig rust classification model is trained via thestb
classifier in terms of speed and performance. Risrgurpose, this study considered a total of ghermént
classifiers—support vector machine (SVM), artiflareural network (ANN), decision tree (C4.5), naive
Bayesian (NB), logistic regression (LR), and k-msarneighbor (KNN)—which are grouped into the




categories of support vector machines, neural mésydree-based methods, statistical approaches, an
nearest-neighbor methods (Lessmann et al., 2008)sélect the most appropriate classifier for the
classification of rust areas, a total of 8,792,08%t pixels and 14,978,012 background pixels were
collected. Then, the rust and background pixelewesampled into 100,000 pixels each.

Using the data set comprising the 100,000 rustIpiend 100,000 background pixels, we
evaluated SVM, ANN, C4.5, NB, LR, and KNN via 1Qedocross validation and compared their
performances. Table 1 summarizes the evaluatioultsesf the six classifiers in terms of the cross-
validation accuracy and test time.

Table 1 — Accuracy and speed performance compaoissix different classifiers

Classifier Accuracy Test Classifier ~Accuracy Test
Rate (%) Time (s) Rate (%) Time (s)
SVM 91.58 911.98 NB 78.56 1.36
ANN 86.38 0.55) LR 63.96 0.64
C4.5 97.39 0.5¢ KNN 96.86 1,642.12

Figure 1 illustrates the results of this comparisona two-dimensional (2D) chart. The x-axis of
this chart is the accuracy rate, and the y-axihéslogarithmic scale of the test time. Among thehe
C4.5 decision tree algorithm is at the far bottéghtrarea of this chart. Compared with all classdj C4.5
was much faster and also more accurate. As a r&sulb was selected as the best classifier fomaihod
and the rust classification model is trained via @#.5 decision tree algorithm.
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Figure 1 — Accuracy and speed performance compaabeix different classifiers

Deter mination of Blasting Area

The previous step classified the presence of rushé image at the pixel level. This indicates
where rust exists, but does not determine whethevhere to blast. In practice, the percentage sfimg
and the rust distribution type in the image aresagred in determining whether blasting the surfadbe
image area is necessary in whole, in part, orlatrathis study, by computing the percentage afing
and the rust distribution type in the image, thealfidecision of determining the area to blast iglena
automatically. First of all, the percentage of ingtn the image is computed by calculating thecprtage
of rust pixels compared with the total number ofefs in an image. Then, the result is categoringd i
eleven cases—degree of rusting from 0 to 10—wHiehASTM defines in document D610 for standard
practices for evaluating the degree of rusting ainted steel surfaces (see Table 2) (ASTM, 2012).

According to the practices, if the image contaiassl than 0.3% rust pixels (the image is
categorized as a degree of rusting from 7 to 1@) final decision—that blasting is unnecessary—aslen
immediately, without further processing (Tam angki®er, 1996). If the image contains more than 33.3%
rust pixels (degree of rusting from 0 to 2), theafidecision—that blasting is wholly necessary—edm
immediately, without further processing (Tam angki®@er, 1996). If the image contains equal to orenor
than 0.3% and equal to or less than 33.3% rustlgixbe rust distribution type should be further
considered to make a final decision.



Table 2 — Scale and description of rust ratingsTNS2012)
Degree of Description
Rusting
10 No rust or less than 0.01% rust
Minute rust, less than 0.03% rust
Few isolated rust spots, less than 0.1% rust
Less than 0.3% rust
Extensive rust spots, less than 1% rust
Less than 3% rust
Less than 10% rust
Approximately 1/6 of surface rusted
Approximately 1/3 of surface rusted
Approximately 1/2 of surface rusted
Approximately 100% of surface rusted
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Once the image is categorized as having equal tmaye than 0.3% and equal to or less than
33.3% rust pixels (degree of rusting from 3 totég image is examined further to determine its tgpe
rust distribution. According to the ASTM (2012) atid SSPC (2000) standards, rust distribution tgres
divided into three groups: spot, general, and miimfprusting. Spot rusting consists of rusting amtcated
in a few localized areas (see Figures 2(a) and).2@bneral rusting consists of rusting with rusbtspof
various sizes and shapes that are randomly disédbacross the surface (see Figures 2(b) and Z(eke
two types of rusting have characteristics that odocally in a few areas; therefore, blasting isessary
only for the rusted areas. Unlike spot or geneausating, pin-point rusting consists of small, isethtspots
of rust that are distributed across the surfaceerample of this type of rust distribution is depit in
Figures 2(c) and 2(f). If pin-point rusting has oed, corrosion has spread across the entire insmge
blasting is necessary for the whole image, beceosesion will continue.

To determine the rust distribution type, this studgs density, a geometric feature, to understand
the characteristics of the image (El-Naga et &Q42 Wei et al., 2009). From the three-dimensidBal)
histogram of different rust distribution types, givthat the bin size is 15x15 pixels, we found,thatike
the spot or general rusting types, a 3D histogramirmpoint rusting is spread over a relatively #isra
range of values. Density is measured by the standaviation of the rust pixels' distribution in tB®
histogram, then use a threshold value to determhmether the type of rust distribution is pin-painsting
or not (spot or general rusting). A pre-definedesiiiold value was obtained from the experiment aasl w
set to 20. If the calculated density value of &t detection result is less than 20, the rustidigion type
of the image is determined to be pin-point rustimgthis case, the final decision is made thattbigsis
wholly necessary. If the calculated density valtithe rust detection result is equal to or morentk@, the
rust distribution type of the image is spot or gaheusting. The final decision is made by provilitne
exact areas in the form of a pixel to blast.

EXPERIMENTAL RESULTS

An experiment was performed to validate the effextess of the proposed method for rust
surface area determination. To collect represemtatust samples for the experiments, images were
acquired by keeping the grit-blast machine 0.4nmfrthe steel component surface under various
illumination conditions. The color images acquiteygl the digital camera had a resolution of 480x640
pixels. Rust images were made by manually croppusy regions based on the rust distribution type
defined in the ASTM (2012) and SSPC (2000) starslémain each image with a resolution of 480640
pixels. Background images were collected by magusglecting images without rust acquired from red
and brown steel bridges which have not yet beeidatgld by research.

Among the images, we combined the rust pixels ia onage with a resolution of 480x640
resolution and background images with a resoluiof80x640 pixels for use as test images. To géinera
the validation result, the experiment was desigoetbver various possible cases in terms of theegegf
rusting and the rust distribution type. A total3# test images were selected, showing differentesesy
and types of rust distribution. Figure 2 showsestamples among 39 test images used in our experimen



As the first step of the proposed method for rustase area determination, the color space coroemsas
performed to transform the image from the RGB csfmace to the HSI color space for each image.

®
Figure 2 — Six test examples: (a) Spot rusting93@); (b) General rusting (16.46%); (c) Pin-pointing
(2.74%); (d) Spot rusting (36.93%); (e) Generatings(55.30%); (f) Pin-point rusting (45.86%)

The trained classification model via the C4.5 deaidree algorithm was used to classify each
pixel in the test images as belonging to rust @ blackground. For 39 test images, the average rust
detection accuracy rate was 97.63% (the standanata® was 2.29). Figure 3 shows the results sf ru
area classification for six examples illustratedrigure 2.

(@) (b) (©) (d) (e) )
Figure 3 — Results of rust area classificationsigrtest examples, accuracy rate of:
(a) 97.89%; (b) 99.72%; (c) 98.82; (d) 99.87%;92¥3%; (f) 94.65%

Once classification of rust area was done, theltestere further processed to determine the rust
areas to blast. Figure 4 shows the results of ihtpstrea determination for six examples from rusta
classification results illustrated in Figure 3. Tdiagonal stripes visually represent the rust serfarea to
be blasted. The degree of rusting (7 to 10, 3 tanl, 0 to 2) and the rust distribution type of ifmage
(spot, general, or pin-point rusting) allow six €asn total. The final decision is broadly dividetb three
categories: blasting is unnecessary, blastingéssmary in the whole image, and blasting is necgssdy
for specified areas.
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Figure 4 — Blasting area determination resultsN@gessary only for specified areas; (b) Necessalyy

for specified areas; (c) Necessary in the wholegengd) Necessary in the whole image; (e) Necesgary

the whole image; (f) Necessary in the whole imadet¢: The diagonal stripes represent the rust serfa
area to be blasted.)

Table 3 shows the success rate of the final detisidlasting area determination for each of the
six cases in terms of the degree of rusting andusiedistribution type.

Table 3 — Success rate of the final decision ddtbig area determination (The number of imagegliyig|
correct decisions/the number of test images)

Rust Type Spot or General Pin-Point
Degree of RUsti

710 10 4/4, 100% 2/2, 100%
3t06 717, 100% 717, 100%
Oto2 12/12, 100% 7/7, 100%




Table 4 shows the average processing time for 30 @gamples. In summary, the average
processing time from color space conversion totinigsarea determination took less than one second o
average, requiring only 0.86 seconds (the standawiftion was 0.07). From a practical viewpointgon
can conclude that the proposed method can be osgetérmine rapidly and accurately the rust surface
blast from the image.

Table 4 — Statistical data on the performance ®fpiftoposed method for rust surface area deterrmati

Color Space Rust Detection  Basting Area  Total
Conversion Determination
0.10 0.52 0.24 0.86

CONCLUSIONS

The advantages of the automated robotic grit-mesthines for steel bridge maintenance are clear.
Recent field trials of a full-scale robotic gritast machine for steel bridge maintenance appesuport
this conclusion as well. In this study, we proposedhethod to determine rapidly and accurately thst r
surface area to blast on steel bridges. The expetahresults of the proposed method showed theat th
average accuracy rate of rust area classificatias about 97.63%, and the success rate of the final
decision of blasting area determination was 100.6@989 test examples. The whole processing tiné& to
only an average of 0.86 seconds. The proposed uheto reduce labor and increase the productivity of
the automated robotic grit-blasting process. Thisns that the proposed method will result in sigaifit
potential cost savings. Furthermore, the proposethod can minimize environmental impacts related to
waste and harmful materials, such as lead and @shéy optimizing the blasting area.

In this study, spot, general, and pin-point rustiogstitute the primary target. However, hybrid
rusting, a mixture of two or three rust distributitypes, occasionally occurs. Therefore, in funesearch,
a method that includes a rust surface area detatimmmethod for hybrid rusting will be developed t
consider every rust distribution type that occunssteel bridge surfaces. In addition, a path plagpni
method for blasting will be developed, based orrtisé surface area determined by the proposed mhetho
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